Some aspects of holographic W-gravity

Open Access
Regular Article - Theoretical Physics

Abstract

We use the Chern-Simons formulation of higher spin theories in three dimensions to study aspects of holographic W-gravity. Concepts which were useful in studies of pure bulk gravity theories, such as the Fefferman-Graham gauge and the residual gauge transformations, which induce Weyl transformations in the boundary theory and their higher spin generalizations, are reformulated in the Chern-Simons language. Flat connections that correspond to conformal and lightcone gauges in the boundary theory are considered.

Keywords

Higher Spin Gravity Chern-Simons Theories Conformal and W Symmetry Anomalies in Field and String Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.M. Polyakov, Quantum Gravity in Two-Dimensions, Mod. Phys. Lett. A 2 (1987) 893 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A.B. Zamolodchikov, Infinite Additional Symmetries in Two-Dimensional Conformal Quantum Field Theory, Theor. Math. Phys. 65 (1985) 1205 [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    C.M. Hull, Lectures on W Gravity, W Geometry and W Strings, ’ In Trieste 1992,Proceedings, High energy physics and cosmology, 76-142 and London Queen Mary and Westfield Coll., QMW-93-02 (93/02) [hep-th/9302110].
  4. [4]
    A. Achucarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    E. Witten, (2+1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    M. Henneaux and S.-J. Rey, Nonlinear W_inf inity as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  7. [7]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like higher-spin gauge theories in three dimensions, J. Phys. A 46 (2013) 214017 [arXiv:1208.1851] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  9. [9]
    S. Fredenhagen and P. Kessel, Metric- and frame-like higher-spin gauge theories in three dimensions, J. Phys. A 48 (2015) 035402 [arXiv:1408.2712] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  10. [10]
    A. Campoleoni and M. Henneaux, Asymptotic symmetries of three-dimensional higher-spin gravity: the metric approach, JHEP 03 (2015) 143 [arXiv:1412.6774] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  11. [11]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    M. Bañados, O. Chandía and A. Ritz, Holography and the Polyakov action, Phys. Rev. D 65 (2002) 126008 [hep-th/0203021] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    J. de Boer, A. Castro, E. Hijano, J.I. Jottar and P. Kraus, Higher Spin Entanglement and W_N Conformal Blocks,arXiv:1412.7520 [INSPIRE].
  14. [14]
    R.R. Poojary and N.V. Suryanarayana, Holographic chiral induced W-gravities, arXiv:1412.2510 [INSPIRE].
  15. [15]
    C. Fefferman and R. Graham, Conformal invariants, Élie Cartan et les Mathématiques d’Aujourdui, Astèrisque (1985), p. 95.MATHGoogle Scholar
  16. [16]
    M. Bañados, Three-dimensional quantum geometry and black holes, hep-th/9901148 [INSPIRE].
  17. [17]
    K. Skenderis and S.N. Solodukhin, Quantum effective action from the AdS /CFT correspondence, Phys. Lett. B 472 (2000) 316 [hep-th/9910023] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    M. Bañados, O. Mišković and S. Theisen, Holographic currents in first order gravity and finite Fefferman-Graham expansions, JHEP 06 (2006) 025 [hep-th/0604148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  20. [20]
    C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    A. Schwimmer and S. Theisen, Entanglement Entropy, Trace Anomalies and Holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    M. Rooman and P. Spindel, Holonomies, anomalies and the Fefferman-Graham ambiguity in AdS 3 gravity, Nucl. Phys. B 594 (2001) 329 [hep-th/0008147] [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar
  23. [23]
    H.L. Verlinde, Conformal Field Theory, 2-D Quantum Gravity and Quantization of Teichmüller Space, Nucl. Phys. B 337 (1990) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R.C. Gunning, Lectures on Riemann surfaces, Princeton University Press, Princeton U.S.A. (1966).MATHGoogle Scholar
  25. [25]
    A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    M. Gutperle and P. Kraus, Higher Spin Black Holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime Geometry in Higher Spin Gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    M. Bañados, R. Canto and S. Theisen, The Action for higher spin black holes in three dimensions, JHEP 07 (2012) 147 [arXiv:1204.5105] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black Holes and Singularity Resolution in Higher Spin Gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    C. Bunster, M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Generalized Black Holes in Three-dimensional Spacetime, JHEP 05 (2014) 031 [arXiv:1404.3305] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    V.A. Fateev and S.L. Lukyanov, The Models of Two-Dimensional Conformal Quantum Field Theory with Z(n) Symmetry, Int. J. Mod. Phys. A 3 (1988) 507 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    C.M. Hull, W gravity anomalies 1: Induced quantum W gravity, Nucl. Phys. B 367 (1991) 731 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    A. Bilal, V.V. Fock and I.I. Kogan, On the origin of W algebras, Nucl. Phys. B 359 (1991) 635 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J. de Boer and J.I. Jottar, Boundary Conditions and Partition Functions in Higher Spin AdS 3/CFT 2, arXiv:1407.3844 [INSPIRE].
  35. [35]
    A. Marshakov and A. Morozov, A NOTE ON W(3) ALGEBRA, Nucl. Phys. B 339 (1990) 79 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Gomis, J. Herrero, K. Kamimura and J. Roca, Finite W(3) transformations in a multitime approach, Phys. Lett. B 339 (1994) 59 [hep-th/9409024] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Centre for Particle Theory & Department of Mathematical SciencesDurham UniversityDurhamU.K.
  2. 2.Max-Planck-Institut für GravitationsphysikGolmGermany

Personalised recommendations