Advertisement

Gauge invariant 1PI effective superstring field theory: inclusion of the Ramond sector

  • Ashoke Sen
Open Access
Regular Article - Theoretical Physics

Abstract

We construct off-shell amplitudes in heterotic and type II string theories in-volving arbitrary combination of Ramond and Neveu-Schwarz sector external states. We also construct the equations of motion of a gauge invariant 1PI effective field theory which reproduces these off-shell amplitudes. Using this construction we prove that the renormalized physical masses do not depend on the choice of local coordinate system and locations of picture changing operators used in defining the off-shell amplitudes. We also use this formalism to examine the conditions under which space-time supersymmetry is unbroken in the quantum theory.

Keywords

Superstrings and Heterotic Strings String Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Sen, Gauge Invariant 1PI Effective Action for Superstring Field Theory, JHEP 06 (2015) 022 [arXiv:1411.7478] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Witten, Interacting Field Theory of Open Superstrings, Nucl. Phys. B 276 (1986) 291 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90 [Erratum ibid. B 459 (1996) 439] [hep-th/9503099] [INSPIRE].
  5. [5]
    N. Berkovits, The Ramond sector of open superstring field theory, JHEP 11 (2001) 047 [hep-th/0109100] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    Y. Okawa and B. Zwiebach, Heterotic string field theory, JHEP 07 (2004) 042 [hep-th/0406212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP 11 (2004) 038 [hep-th/0409018] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    H. Kunitomo, The Ramond Sector of Heterotic String Field Theory, PTEP 2014 (2014) 043B01 [arXiv:1312.7197] [INSPIRE].MATHGoogle Scholar
  9. [9]
    H. Kunitomo, Symmetries and Feynman rules for the Ramond sector in open superstring field theory, PTEP 2015 (2015) 033B11 [arXiv:1412.5281] [INSPIRE].MathSciNetGoogle Scholar
  10. [10]
    A. Sen, Off-shell Amplitudes in Superstring Theory, Fortsch. Phys. 63 (2015) 149 [arXiv:1408.0571] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    N. Berkovits and B. Zwiebach, On the picture dependence of Ramond-Ramond cohomology, Nucl. Phys. B 523 (1998) 311 [hep-th/9711087] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    T. Erler, S. Konopka and I. Sachs, NS-NS Sector of Closed Superstring Field Theory, JHEP 08 (2014) 158 [arXiv:1403.0940] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    R. Pius, A. Rudra and A. Sen, Mass Renormalization in String Theory: Special States, JHEP 07 (2014) 058 [arXiv:1311.1257] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    R. Pius, A. Rudra and A. Sen, Mass Renormalization in String Theory: General States, JHEP 07 (2014) 062 [arXiv:1401.7014] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    E. Witten, Superstring Perturbation Theory Revisited, arXiv:1209.5461 [INSPIRE].
  16. [16]
    E. Witten, More On Superstring Perturbation Theory, arXiv:1304.2832 [INSPIRE].
  17. [17]
    A. Belopolsky, De Rham cohomology of the supermanifolds and superstring BRST cohomology, Phys. Lett. B 403 (1997) 47 [hep-th/9609220] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A. Belopolsky, New geometrical approach to superstrings, hep-th/9703183 [INSPIRE].
  19. [19]
    A. Belopolsky, Picture changing operators in supergeometry and superstring theory, hep-th/9706033 [INSPIRE].
  20. [20]
    E. D’Hoker and D.H. Phong, Two loop superstrings. 1. Main formulas, Phys. Lett. B 529 (2002) 241 [hep-th/0110247] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    E. D’Hoker and D.H. Phong, Two loop superstrings. 2. The chiral measure on moduli space, Nucl. Phys. B 636 (2002) 3 [hep-th/0110283] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    E. D’Hoker and D.H. Phong, Two loop superstrings. 3. Slice independence and absence of ambiguities, Nucl. Phys. B 636 (2002) 61 [hep-th/0111016] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    E. D’Hoker and D.H. Phong, Two loop superstrings. 4. The cosmological constant and modular forms, Nucl. Phys. B 639 (2002) 129 [hep-th/0111040] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    E. D’Hoker and D.H. Phong, Two-loop superstrings. 5. Gauge slice independence of the N-point function, Nucl. Phys. B 715 (2005) 91 [hep-th/0501196] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    E. D’Hoker and D.H. Phong, Two-loop superstrings. 6. Non-renormalization theorems and the 4-point function, Nucl. Phys. B 715 (2005) 3 [hep-th/0501197] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    E. D’Hoker and D.H. Phong, Two-Loop Superstrings. 7. Cohomology of Chiral Amplitudes, Nucl. Phys. B 804 (2008) 421 [arXiv:0711.4314] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    E. Witten, Notes On Supermanifolds and Integration, arXiv:1209.2199 [INSPIRE].
  28. [28]
    E. Witten, Notes On Super Riemann Surfaces And Their Moduli, arXiv:1209.2459 [INSPIRE].
  29. [29]
    E. Witten, Notes On Holomorphic String And Superstring Theory Measures Of Low Genus, arXiv:1306.3621 [INSPIRE].
  30. [30]
    R. Donagi and E. Witten, Supermoduli Space Is Not Projected, arXiv:1304.7798 [INSPIRE].
  31. [31]
    R. Donagi and E. Witten, Super Atiyah classes and obstructions to splitting of supermoduli space, arXiv:1404.6257 [INSPIRE].
  32. [32]
    E. D’Hoker and D.H. Phong, Two-loop vacuum energy for Calabi-Yau orbifold models, Nucl. Phys. B 877 (2013) 343 [arXiv:1307.1749] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    E. D’Hoker, Topics in Two-Loop Superstring Perturbation Theory, arXiv:1403.5494 [INSPIRE].
  34. [34]
    T. Erler, S. Konopka and I. Sachs, Resolving Wittens superstring field theory, JHEP 04 (2014) 150 [arXiv:1312.2948] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    H. Matsunaga, Nonlinear gauge invariance and WZW-like action for NS-NS superstring field theory, arXiv:1407.8485 [INSPIRE].
  36. [36]
    E.P. Verlinde and H.L. Verlinde, Multiloop Calculations in Covariant Superstring Theory, Phys. Lett. B 192 (1987) 95 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    P.C. Nelson, Covariant Insertion of General Vertex Operators, Phys. Rev. Lett. 62 (1989) 993 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    O. Lechtenfeld, Superconformal ghost correlations on Riemann surfaces, Phys. Lett. B 232 (1989) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    A. Morozov, Straightforward proof of Lechtenfelds formula for β, γ-correlator, Phys. Lett. B 234 (1990) 15 [Yad. Fiz. 51 (1990) 301] [Sov. J. Nucl. Phys. 51 (1990) 190] [INSPIRE].
  41. [41]
    A. Berera, Unitary string amplitudes, Nucl. Phys. B 411 (1994) 157 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    E. Witten, The Feynman iϵ in String Theory, JHEP 04 (2015) 055 [arXiv:1307.5124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    H. Hata and B. Zwiebach, Developing the covariant Batalin-Vilkovisky approach to string theory, Annals Phys. 229 (1994) 177 [hep-th/9301097] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    R. Pius, A. Rudra and A. Sen, String Perturbation Theory Around Dynamically Shifted Vacuum, JHEP 10 (2014) 70 [arXiv:1404.6254] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Harish-Chandra Research InstituteAllahabadIndia

Personalised recommendations