Advertisement

Quantum Wronskian approach to six-point gluon scattering amplitudes at strong coupling

  • Yasuyuki Hatsuda
  • Katsushi Ito
  • Yuji Satoh
  • Junji Suzuki
Open Access
Article

Abstract

We study the six-point gluon scattering amplitudes in \( \mathcal{N} \) = 4 super Yang-Mills theory at strong coupling based on the twisted ℤ4-symmetric integrable model. The lattice regularization allows us to derive the associated thermodynamic Bethe ansatz (TBA) equations as well as the functional relations among the Q-/T-/Y-functions. The quantum Wronskian relation for the Q-/T-functions plays an important role in determining a series of the expansion coefficients of the T-/Y-functions around the UV limit, including the dependence on the twist parameter. Studying the CFT limit of the TBA equations, we derive the leading analytic expansion of the remainder function for the general kinematics around the limit where the dual Wilson loops become regular-polygonal. We also compare the rescaled remainder functions at strong coupling with those at two, three and four loops, and find that they are close to each other along the trajectories parameterized by the scale parameter of the integrable model.

Keywords

Integrable Equations in Physics Scattering Amplitudes AdS-CFT Correspondence Bethe Ansatz 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    L.J. Mason and D. Skinner, The Complete Planar S-matrix of N = 4 SYM as a Wilson Loop in Twistor Space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory, JHEP 06 (2014) 116 [arXiv:1402.3300] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An Operator Product Expansion for Polygonal null Wilson Loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    B. Basso, A. Sever and P. Vieira, Spacetime and Flux Tube S-Matrices at Finite Coupling for N =4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux tube S-matrix II. Extracting and Matching Data, JHEP 01 (2014) 008 [arXiv:1306.2058] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix III. The two-particle contributions, arXiv:1402.3307 [INSPIRE].
  15. [15]
    L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space, JHEP 11 (2009) 082 [arXiv:0904.0663] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic Bubble Ansatz, JHEP 09 (2011) 032 [arXiv:0911.4708] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for Scattering Amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [INSPIRE].MathSciNetGoogle Scholar
  18. [18]
    Y. Hatsuda, K. Ito, K. Sakai and Y. Satoh, Thermodynamic Bethe Ansatz Equations for Minimal Surfaces in AdS 3, JHEP 04 (2010) 108 [arXiv:1002.2941] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    C.R. Fernandez-Pousa, M.V. Gallas, T.J. Hollowood and J.L. Miramontes, The Symmetric space and homogeneous sine-Gordon theories, Nucl. Phys. B 484 (1997) 609 [hep-th/9606032] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    Y. Hatsuda, K. Ito, K. Sakai and Y. Satoh, g-functions and gluon scattering amplitudes at strong coupling, JHEP 04 (2011) 100 [arXiv:1102.2477] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    Y. Hatsuda, K. Ito and Y. Satoh, T-functions and multi-gluon scattering amplitudes, JHEP 02 (2012) 003 [arXiv:1109.5564] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    Y. Hatsuda, K. Ito and Y. Satoh, Null-polygonal minimal surfaces in AdS 4 from perturbed W minimal models, JHEP 02 (2013) 067 [arXiv:1211.6225] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    R. Koberle and J.A. Swieca, Factorizable Z(N) models, Phys. Lett. B 86 (1979) 209 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A.M. Tsvelik, The Exact Solution of 2-DZ(N ) Invariant Statistical Models, Nucl. Phys. B 305 (1988) 675 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    V.A. Fateev, Integrable deformations in Z(N) symmetrical models of conformal quantum field theory, Int. J. Mod. Phys. A 6 (1991) 2109 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    A. Klümper, M.T. Batchelor and P.A. Pearce, Central charges of the 6- and 19- vertex models with twisted boundary conditions, J. Phys. A 24 (1991) 3113.ADSGoogle Scholar
  27. [27]
    Y. Hatsuda, K. Ito, K. Sakai and Y. Satoh, Six-point gluon scattering amplitudes from Z 4 -symmetric integrable model, JHEP 09 (2010) 064 [arXiv:1005.4487] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys. 177 (1996) 381 [hep-th/9412229] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  29. [29]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 2. Q operator and DDV equation, Commun. Math. Phys. 190 (1997) 247 [hep-th/9604044] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, On nonequilibrium states in QFT model with boundary interaction, Nucl. Phys. B 549 (1999) 529 [hep-th/9812091] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    P. Dorey, C. Dunning and R. Tateo, The ODE/IM Correspondence, J. Phys. A 40 (2007) R205 [hep-th/0703066] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    N. Gromov, V. Kazakov, S. Leurent and Z. Tsuboi, Wronskian Solution for AdS/CFT Y-system, JHEP 01 (2011) 155 [arXiv:1010.2720] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    A. Brandhuber, P. Heslop, V.V. Khoze and G. Travaglini, Simplicity of Polygon Wilson Loops in N = 4 SYM, JHEP 01 (2010) 050 [arXiv:0910.4898] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B. Basso, A. Sever and P. Vieira, On the collinear limit of scattering amplitudes at strong coupling, arXiv:1405.6350 [INSPIRE].
  36. [36]
    A.B. Zamolodchikov, Thermodynamic Bethe Ansatz in Relativistic Models. Scaling Three State Potts and Lee-yang Models, Nucl. Phys. B 342 (1990) 695 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    J. Bartels, J. Kotanski and V. Schomerus, Excited Hexagon Wilson Loops for Strongly Coupled N = 4 SYM, JHEP 01 (2011) 096 [arXiv:1009.3938] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    J. Bartels, J. Kotanski, V. Schomerus and M. Sprenger, The Excited Hexagon Reloaded, arXiv:1311.1512 [INSPIRE].
  39. [39]
    C. Destri and H.J. de Vega, Light Cone Lattice Approach to Fermionic Theories in 2-D: The Massive Thirring Model, Nucl. Phys. B 290 (1987) 363 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R.J. Baxter, Partition function of the eight vertex lattice model, Annals Phys. 70 (1972) 193 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  41. [41]
    A.B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories, Phys. Lett. B 253 (1991) 391 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    S. Fomin and A. Zelevinsky, Y-system and generalized associahedra, Ann. Math. 158 (2003) 977.CrossRefMATHMathSciNetGoogle Scholar
  43. [43]
    B. Keller, Cluster algebras, quiver representations and triangulated categories, arXiv:0807.1960.
  44. [44]
    R. Inoue, O. Iyama, B. Keller, A. Kuniba , T. Nakanishi, Periodicities of T and Y-systems, dilogarithm identities, and cluster algebras I: Type B r, Publ. RIMS. 49 (2013) 1.CrossRefMATHMathSciNetGoogle Scholar
  45. [45]
    R. Inoue, O. Iyama, B. Keller, A. Kuniba , T. Nakanishi, Periodicities of T and Y-systems, dilogarithm identities, and cluster algebras II: Types C r , F 4 , and G 2, Publ. RIMS. 49 (2013) 43.CrossRefMATHMathSciNetGoogle Scholar
  46. [46]
    S.L. Lukyanov and A.B. Zamolodchikov, Quantum Sine(h)-Gordon Model and Classical Integrable Equations, JHEP 07 (2010) 008 [arXiv:1003.5333] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    G.P. Pronko and Y. Stroganov, Bethe equations on the wrong side of equator, J. Phys. A 32 (1999) 2333 [hep-th/9808153] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    V. Del Duca, C. Duhr and V.A. Smirnov, The Two-Loop Hexagon Wilson Loop in N = 4 SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, arXiv:arXiv:cs/0004015.
  51. [51]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  52. [52]
    P. Dorey, I. Runkel, R. Tateo and G. Watts, g function flow in perturbed boundary conformal field theories, Nucl. Phys. B 578 (2000) 85 [hep-th/9909216] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    P. Dorey, A. Lishman, C. Rim and R. Tateo, Reflection factors and exact g-functions for purely elastic scattering theories, Nucl. Phys. B 744 (2006) 239 [hep-th/0512337] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable quantum field theories in finite volume: Excited state energies, Nucl. Phys. B 489 (1997) 487 [hep-th/9607099] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    D. Fioravanti and M. Rossi, Exact conserved quantities on the cylinder. 2. Off critical case, JHEP 08 (2003) 042 [hep-th/0302220] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    C. Destri and H.J. de Vega, New thermodynamic Bethe ansatz equations without strings, Phys. Rev. Lett. 69 (1992) 2313 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Yasuyuki Hatsuda
    • 1
  • Katsushi Ito
    • 2
  • Yuji Satoh
    • 3
  • Junji Suzuki
    • 4
  1. 1.DESY Theory Group, DESY HamburgHamburgGermany
  2. 2.Department of PhysicsTokyo Institute of TechnologyTokyoJapan
  3. 3.Institute of PhysicsUniversity of TsukubaIbarakiJapan
  4. 4.Department of PhysicsShizuoka UniversityShizuokaJapan

Personalised recommendations