Advertisement

U(1) mixing and D-brane linear equivalence

  • Fernando Marchesano
  • Diego Regalado
  • Gianluca Zoccarato
Open Access
Article

Abstract

Linear equivalence is a criterion that compares submanifolds in the same homology class. We show that, in the context of type II compactifications with D-branes, this concept translates to the kinetic mixing between U(1) gauge symmetries arising in the open and closed string sectors. We argue that in generic D-brane models such mixing is experimentally detectable through the existence of milli-charged particles. We compute these gauge kinetic functions by classifying the 4d monopoles of a compactification and analyzing the Witten effect on them, finding agreement with previous results and extending them to more general setups. In particular, we compute the gauge kinetic functions mixing bulk and magnetized D-brane U(1)’s and derive a generalization of linear equivalence for these objects. Finally, we apply our findings to F-theory SU(5) models with hypercharge flux breaking.

Keywords

Solitons Monopoles and Instantons Intersecting branes models D-branes Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.E. Ibáñez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012) [INSPIRE].
  2. [2]
    S. Cecotti, M.C.N. Cheng, J.J. Heckman and C. Vafa, Yukawa couplings in F-theory and non-commutative geometry, arXiv:0910.0477 [INSPIRE].
  3. [3]
    A. Font, L.E. Ibáñez, F. Marchesano and D. Regalado, Non-perturbative effects and Yukawa hierarchies in F-theory SU(5) unification, JHEP 03 (2013) 140 [Erratum ibid. 07 (2013) 036] [arXiv:1211.6529] [INSPIRE].
  4. [4]
    A. Font, F. Marchesano, D. Regalado and G. Zoccarato, Up-type quark masses in SU(5) F-theory models, JHEP 11 (2013) 125 [arXiv:1307.8089] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Hattori, M. Matsuda, T. Matsuoka and D. Mochinaga, The string unification of gauge couplings and gauge kinetic mixings, Prog. Theor. Phys. 90 (1993) 895 [hep-ph/9307305] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Lukas and K.S. Stelle, Heterotic anomaly cancellation in five-dimensions, JHEP 01 (2000) 010 [hep-th/9911156] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    D. Lüst and S. Stieberger, Gauge threshold corrections in intersecting brane world models, Fortschr. Phys. 55 (2007) 427 [hep-th/0302221] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    S.A. Abel and B.W. Schofield, Brane-antibrane kinetic mixing, millicharged particles and SUSY breaking, Nucl. Phys. B 685 (2004) 150 [hep-th/0311051] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    H. Jockers and J. Louis, The effective action of D7-branes in N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 705 (2005) 167 [hep-th/0409098] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the heterotic string with line bundles, JHEP 06 (2005) 020 [hep-th/0504232] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    S.A. Abel, J. Jaeckel, V.V. Khoze and A. Ringwald, Illuminating the hidden sector of string theory by shining light through a magnetic field, Phys. Lett. B 666 (2008) 66 [hep-ph/0608248] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    T.W. Grimm, T.-W. Ha, A. Klemm and D. Klevers, The D5-brane effective action and superpotential in N = 1 compactifications, Nucl. Phys. B 816 (2009) 139 [arXiv:0811.2996] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in LARGE volume string compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F. Gmeiner and G. Honecker, Complete gauge threshold corrections for intersecting fractional D6-branes: the Z 6 and Z 6 standard models, Nucl. Phys. B 829 (2010) 225 [arXiv:0910.0843] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    M. Goodsell and A. Ringwald, Light hidden-sector U(1)s in string compactifications, Fortschr. Phys. 58 (2010) 716 [arXiv:1002.1840] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    M. Bullimore, J.P. Conlon and L.T. Witkowski, Kinetic mixing of U(1)s for local string models, JHEP 11 (2010) 142 [arXiv:1009.2380] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    M. Cicoli, M. Goodsell, J. Jaeckel and A. Ringwald, Testing string vacua in the lab: from a hidden CMB to dark forces in flux compactifications, JHEP 07 (2011) 114 [arXiv:1103.3705] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Williams, C.P. Burgess, A. Maharana and F. Quevedo, New constraints (and motivations) for Abelian gauge bosons in the MeV-TeV mass range, JHEP 08 (2011) 106 [arXiv:1103.4556] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T.W. Grimm and D.V. Lopes, The N = 1 effective actions of D-branes in type IIA and IIB orientifolds, Nucl. Phys. B 855 (2012) 639 [arXiv:1104.2328] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Kerstan and T. Weigand, The effective action of D6-branes in N = 1 type IIA orientifolds, JHEP 06 (2011) 105 [arXiv:1104.2329] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    P.G. Cámara, L.E. Ibáñez and F. Marchesano, RR photons, JHEP 09 (2011) 110 [arXiv:1106.0060] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Honecker, Kähler metrics and gauge kinetic functions for intersecting D6-branes on toroidal orbifoldsthe complete perturbative story, Fortschr. Phys. 60 (2012) 243 [arXiv:1109.3192] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    M. Goodsell, S. Ramos-Sanchez and A. Ringwald, Kinetic mixing of U(1)s in heterotic orbifolds, JHEP 01 (2012) 021 [arXiv:1110.6901] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    G. Honecker, M. Ripka and W. Staessens, The importance of being rigid: D6-brane model building on T 6 /Z 2 × Z 6 with discrete torsion, Nucl. Phys. B 868 (2013) 156 [arXiv:1209.3010] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    G. Shiu, P. Soler and F. Ye, Millicharged dark matter in quantum gravity and string theory, Phys. Rev. Lett. 110 (2013) 241304 [arXiv:1302.5471] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Feldman, B. Körs and P. Nath, Extra-weakly interacting dark matter, Phys. Rev. D 75 (2007) 023503 [hep-ph/0610133] [INSPIRE].ADSGoogle Scholar
  30. [30]
    D. Feldman, Z. Liu, P. Nath and B.D. Nelson, Explaining PAMELA and WMAP data through coannihilations in extended SUGRA with collider implications, Phys. Rev. D 80 (2009) 075001 [arXiv:0907.5392] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Ibarra, A. Ringwald and C. Weniger, Hidden gauginos of an unbroken U(1): cosmological constraints and phenomenological prospects, JCAP 01 (2009) 003 [arXiv:0809.3196] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Arvanitaki, N. Craig, S. Dimopoulos, S. Dubovsky and J. March-Russell, String photini at the LHC, Phys. Rev. D 81 (2010) 075018 [arXiv:0909.5440] [INSPIRE].ADSGoogle Scholar
  33. [33]
    N.J. Hitchin, Lectures on special Lagrangian submanifolds, math.DG/9907034 [INSPIRE].
  34. [34]
    T.W. Grimm and J. Louis, The effective action of type IIA Calabi-Yau orientifolds, Nucl. Phys. B 718 (2005) 153 [hep-th/0412277] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    F. Marchesano, Progress in D-brane model building, Fortschr. Phys. 55 (2007) 491 [hep-th/0702094] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  38. [38]
    E. Witten, Dyons of charge eθ/2π, Phys. Lett. B 86 (1979) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    F. Brümmer, J. Jaeckel and V.V. Khoze, Magnetic mixing: electric minicharges from magnetic monopoles, JHEP 06 (2009) 037 [arXiv:0905.0633] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M.R. Douglas, D.S. Park and C. Schnell, The Cremmer-Scherk mechanism in F-theory compactifications on K3 manifolds, JHEP 05 (2014) 135 [arXiv:1403.1595] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryII. Experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, Adv. Theor. Math. Phys. 15 (2011) 1523 [arXiv:0808.2223] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  43. [43]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 supergravity-matter systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  45. [45]
    T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at singularities, compactification and hypercharge, JHEP 01 (2007) 107 [hep-th/0610007] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    J. Evslin and L. Martucci, D-brane networks in flux vacua, generalized cycles and calibrations, JHEP 07 (2007) 040 [hep-th/0703129] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    J. Redondo, The low energy frontier: probes with photons, arXiv:0805.3112 [INSPIRE].
  49. [49]
    R. Donagi and M. Wijnholt, Model building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  50. [50]
    R. Blumenhagen, Gauge coupling unification in F-theory grand unified theories, Phys. Rev. Lett. 102 (2009) 071601 [arXiv:0812.0248] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    J.P. Conlon and E. Palti, On gauge threshold corrections for local IIB/F-theory GUTs, Phys. Rev. D 80 (2009) 106004 [arXiv:0907.1362] [INSPIRE].ADSGoogle Scholar
  52. [52]
    P.J. Ruback, The motion of Kaluza-Klein monopoles, Commun. Math. Phys. 107 (1986) 93 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Fernando Marchesano
    • 1
  • Diego Regalado
    • 1
    • 2
  • Gianluca Zoccarato
    • 1
    • 2
  1. 1.Instituto de Física Teórica UAM-CSICCantoblancoSpain
  2. 2.Departamento de Física TeóricaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations