Advertisement

Linear quivers and \( \mathcal{N} \) = 1 SCFTs from M5-branes

  • Ibrahima Bah
  • Nikolay Bobev
Open Access
Article

Abstract

We study a class of \( \mathcal{N} \) = 1 quiver gauge theories build out of vector multiplets and matter multiplets in the fundamental and bifundamental representations. We argue that these theories flow to interacting SCFTs in the IR and calculate their central charges. We exhibit a type IIA brane construction which at low energies is described by these SCFTs. This also leads to a natural description of the theories in terms of M5-branes on a punctured sphere.

Keywords

Supersymmetric gauge theory Duality in Gauge Field Theories Conformal Field Models in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
  2. [2]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Giveon and D. Kutasov, Brane dynamics and gauge theory, Rev. Mod. Phys. 71 (1999) 983 [hep-th/9802067] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    I. Bah and B. Wecht, New N = 1 superconformal field theories in four dimensions, JHEP 07 (2013) 107 [arXiv:1111.3402] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT dual pairs from M5-branes on Riemann surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].ADSGoogle Scholar
  6. [6]
    I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M5-branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].
  12. [12]
    K. Maruyoshi, M. Taki, S. Terashima and F. Yagi, New Seiberg dualities from N = 2 dualities, JHEP 09 (2009) 086 [arXiv:0907.2625] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    A. Gadde, K. Maruyoshi, Y. Tachikawa and W. Yan, New N = 1 dualities, JHEP 06 (2013) 056 [arXiv:1303.0836] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    K. Maruyoshi, Y. Tachikawa, W. Yan and K. Yonekura, N = 1 dynamics with T N theory, JHEP 10 (2013) 010 [arXiv:1305.5250] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    D. Xie, M5 brane and four dimensional N = 1 theories I, JHEP 04 (2014) 154 [arXiv:1307.5877] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly marginal deformations and global symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    M.J. Strassler, An unorthodox introduction to supersymmetric gauge theory, hep-th/0309149 [INSPIRE].
  19. [19]
    D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Y. Tachikawa and B. Wecht, Explanation of the central charge ratio 27/32 in four-dimensional renormalization group flows between superconformal theories, Phys. Rev. Lett. 103 (2009) 061601 [arXiv:0906.0965] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N =1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    E. Witten, Branes and the dynamics of QCD, Nucl. Phys. B 507 (1997) 658 [hep-th/9706109] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    K. Hori, H. Ooguri and Y. Oz, Strong coupling dynamics of four-dimensional N = 1 gauge theories from M-theory five-brane, Adv. Theor. Math. Phys. 1 (1998) 1 [hep-th/9706082] [INSPIRE].MathSciNetGoogle Scholar
  25. [25]
    J. de Boer, K. Hori, H. Ooguri and Y. Oz, Kähler potential and higher derivative terms from M-theory five-brane, Nucl. Phys. B 518 (1998) 173 [hep-th/9711143] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. de Boer, K. Hori, H. Ooguri and Y. Oz, Branes and dynamical supersymmetry breaking, Nucl. Phys. B 522 (1998) 20 [hep-th/9801060] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. de Boer, K. Hori and H. Ooguri, Membrane scattering in curved space with M momentum transfer, Nucl. Phys. B 525 (1998) 257 [hep-th/9802005] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Giveon and O. Pelc, M theory, type IIA string and 4 − D N = 1 SUSY SU(N L) × SU(N R) gauge theory, Nucl. Phys. B 512 (1998) 103 [hep-th/9708168] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    S. Elitzur, A. Giveon, D. Kutasov and D. Tsabar, Branes, orientifolds and chiral gauge theories, Nucl. Phys. B 524 (1998) 251 [hep-th/9801020] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2D topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    C. Beem and A. Gadde, The N = 1 superconformal index for class S fixed points, JHEP 04 (2014) 036 [arXiv:1212.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K.A. Intriligator and N. Seiberg, Phases of N = 1 supersymmetric gauge theories in four-dimensions, Nucl. Phys. B 431 (1994) 551 [hep-th/9408155] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS 5 solutions of M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  37. [37]
    I. Bah, Quarter-BPS AdS 5 solutions in M-theory with a T 2 bundle over a Riemann surface, JHEP 08 (2013) 137 [arXiv:1304.4954] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Institut de Physique Théorique, CEA/SaclayGif-sur-Yvette CedexFrance
  2. 2.Simons Center for Geometry and PhysicsStony Brook UniversityStony BrookU.S.A.

Personalised recommendations