Advertisement

Holographic Thermal Helicity

  • Tatsuo Azeyanagi
  • R. Loganayagam
  • Gim Seng Ng
  • Maria J. Rodriguez
Open Access
Article

Abstract

We study the thermal helicity, defined in arXiv:1211.3850, of a conformal field theory with anomalies in the context of AdS2n+1/CFT2n . To do so, we consider large charged rotating AdS black holes in the Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant using fluid/gravity expansion. We compute the anomalyinduced current and stress tensor of the dual CFT in leading order of the fluid/gravity derivative expansion and show their agreement with the field theoretical replacement rule for the thermal helicity. Such replacement rule is reflected in the bulk by new replacement rules obeyed by the Hall currents around the black hole.

Keywords

AdS-CFT Correspondence Global Symmetries Anomalies in Field and String Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Loganayagam, Anomalies and the helicity of the thermal state, JHEP 11 (2013) 205 [arXiv:1211.3850] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    S. Bhattacharyya, S. Lahiri, R. Loganayagam and S. Minwalla, Large rotating AdS black holes from fluid mechanics, JHEP 09 (2008) 054 [arXiv:0708.1770] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    M. Torabian and H.-U. Yee, Holographic nonlinear hydrodynamics from AdS/CFT with multiple/non-Abelian symmetries, JHEP 08 (2009) 020 [arXiv:0903.4894] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    D.E. Kharzeev and H.J. Warringa, Chiral magnetic conductivity, Phys. Rev. D 80 (2009) 034028 [arXiv:0907.5007] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Lublinsky and I. Zahed, Anomalous chiral superfluidity, Phys. Lett. B 684 (2010) 119 [arXiv:0910.1373] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    Y. Neiman and Y. Oz, Relativistic hydrodynamics with general anomalous charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, JHEP 05 (2014) 147 [arXiv:1105.3733] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    D.E. Kharzeev and H.-U. Yee, Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations, Phys. Rev. D 84 (2011) 045025 [arXiv:1105.6360] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. Loganayagam, Anomaly induced transport in arbitrary dimensions, arXiv:1106.0277 [INSPIRE].
  13. [13]
    Y. Neiman and Y. Oz, Anomalies in superfluids and a chiral electric effect, JHEP 09 (2011) 011 [arXiv:1106.3576] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    S. Dubovsky, L. Hui and A. Nicolis, Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, Phys. Rev. D 89 (2014) 045016 [arXiv:1107.0732] [INSPIRE].ADSGoogle Scholar
  15. [15]
    T. Kimura and T. Nishioka, The chiral heat effect, Prog. Theor. Phys. 127 (2012) 1009 [arXiv:1109.6331] [INSPIRE].CrossRefMATHADSGoogle Scholar
  16. [16]
    S. Lin, An anomalous hydrodynamics for chiral superfluid, Phys. Rev. D 85 (2012) 045015 [arXiv:1112.3215] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J.L. Manes and M. Valle, Parity violating gravitational response and anomalous constitutive relations, JHEP 01 (2013) 008 [arXiv:1211.0876] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    N. Banerjee et al., Constraints on fluid dynamics from equilibrium partition functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    K. Jensen, Triangle anomalies, thermodynamics and hydrodynamics, Phys. Rev. D 85 (2012) 125017 [arXiv:1203.3599] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Jain and T. Sharma, Anomalous charged fluids in 1 + 1d from equilibrium partition function, JHEP 01 (2013) 039 [arXiv:1203.5308] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    M. Valle, Hydrodynamics in 1 + 1 dimensions with gravitational anomalies, JHEP 08 (2012) 113 [arXiv:1206.1538] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP 02 (2013) 088 [arXiv:1207.5824] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    S. Golkar and D.T. Son, Non-renormalization of the chiral vortical effect coefficient, arXiv:1207.5806 [INSPIRE].
  24. [24]
    S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on superfluid hydrodynamics from equilibrium partition functions, JHEP 01 (2013) 040 [arXiv:1206.6106] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    M. Valle, Kinetic theory and evolution of cosmological fluctuations with neutrino number asymmetry, Phys. Rev. D 88 (2013) 041304 [arXiv:1307.0392] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S. Bhattacharyya, J.R. David and S. Thakur, Second order transport from anomalies, JHEP 01 (2014) 010 [arXiv:1305.0340] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    E. Megias and F. Pena-Benitez, Fluid/gravity correspondence, second order transport and gravitational anomaly, EPJ Web Conf. 66 (2014) 04018 [arXiv:1307.7592] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    K. Jensen, R. Loganayagam and A. Yarom, Anomaly inflow and thermal equilibrium, JHEP 05 (2014) 134 [arXiv:1310.7024] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    K. Jensen, R. Loganayagam and A. Yarom, to appear.Google Scholar
  30. [30]
    D.-F. Hou, H. Liu and H.-c. Ren, A possible higher order correction to the vortical conductivity in a gauge field plasma, Phys. Rev. D 86 (2012) 121703 [arXiv:1210.0969] [INSPIRE].ADSGoogle Scholar
  31. [31]
    K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational anomaly and transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    R. Loganayagam and P. Surowka, Anomaly/transport in an ideal Weyl gas, JHEP 04 (2012) 097 [arXiv:1201.2812] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez, Holographic gravitational anomaly and chiral vortical effect, JHEP 09 (2011) 121 [arXiv:1107.0368] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    S. Chapman, Y. Neiman and Y. Oz, Fluid/gravity correspondence, local wald entropy current and gravitational anomaly, JHEP 07 (2012) 128 [arXiv:1202.2469] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    T. Azeyanagi, R. Loganayagam, G. S. Ng and M.J. Rodriguez, in preparation.Google Scholar
  36. [36]
    P. Kraus, Lectures on black holes and the AdS 3 /CFT 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    L.F. Alday, F. Benini and Y. Tachikawa, Liouville/Toda central charges from M 5-branes, Phys. Rev. Lett. 105 (2010) 141601 [arXiv:0909.4776] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M 5-branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    N. Banerjee, S. Dutta, S. Jain, R. Loganayagam and T. Sharma, Constraints on anomalous fluid in arbitrary dimensions, JHEP 03 (2013) 048 [arXiv:1206.6499] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    M. Stone, Gravitational anomalies and thermal Hall effect in topological insulators, Phys. Rev. B 85 (2012) 184503 [arXiv:1201.4095] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    S. Deser and B. Tekin, Energy in topologically massive gravity, Class. Quant. Grav. 20 (2003) L259 [gr-qc/0307073] [INSPIRE].CrossRefMATHMathSciNetADSGoogle Scholar
  42. [42]
    S.N. Solodukhin, Holography with gravitational Chern-Simons, Phys. Rev. D 74 (2006) 024015 [hep-th/0509148] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Bouchareb and G. Clement, Black hole mass and angular momentum in topologically massive gravity, Class. Quant. Grav. 24 (2007) 5581 [arXiv:0706.0263] [INSPIRE].CrossRefMATHMathSciNetADSGoogle Scholar
  44. [44]
    G. Compere and S. Detournay, Semi-classical central charge in topologically massive gravity, Class. Quant. Grav. 26 (2009) 012001 [Erratum ibid. 26 (2009) 139801] [arXiv:0808.1911] [INSPIRE].
  45. [45]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    Y. Tachikawa, Black hole entropy in the presence of Chern-Simons terms, Class. Quant. Grav. 24 (2007) 737 [hep-th/0611141] [INSPIRE].CrossRefMATHMathSciNetADSGoogle Scholar
  47. [47]
    L. Bonora, M. Cvitan, P. Dominis Prester, S. Pallua and I. Smolic, Gravitational Chern-Simons lagrangians and black hole entropy, JHEP 07 (2011) 085 [arXiv:1104.2523] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    R. Loganayagam, Entropy current in conformal hydrodynamics, JHEP 05 (2008) 087 [arXiv:0801.3701] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    E. Megias and F. Pena-Benitez, Holographic gravitational anomaly in first and second order hydrodynamics, JHEP 05 (2013) 115 [arXiv:1304.5529] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Tatsuo Azeyanagi
    • 1
    • 2
  • R. Loganayagam
    • 2
    • 3
  • Gim Seng Ng
    • 2
  • Maria J. Rodriguez
    • 2
    • 4
  1. 1.Département de PhysiqueEcole Normale Supérieure, CNRSParisFrance
  2. 2.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeU.S.A.
  3. 3.Junior Fellow, Harvard Society of FellowsHarvard UniversityCambridgeU.S.A.
  4. 4.Institut de Physique ThéoriqueCEA Saclay, CNRS URA 2306Gif-sur-YvetteFrance

Personalised recommendations