N=1 and N=2 pure supergravities on a manifold with boundary

Open Access


Working in the geometric approach, we construct the lagrangians of N = 1 and N = 2 pure supergravity in four dimensions with negative cosmological constant, in the presence of a non trivial boundary of space-time. We find that the supersymmetry invariance of the action requires the addition of topological terms which generalize at the supersymmetric level the Gauss-Bonnet term. Supersymmetry invariance is achieved without requiring Dirichlet boundary conditions on the fields at the boundary, rather we find that the boundary values of the fieldstrengths are dynamically fixed to constant values in terms of the cosmological constant Λ. From a group-theoretical point of view this means in particular the vanishing of the OSp(N|4)-supercurvatures at the boundary.


Supergravity Models Differential and Algebraic Geometry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.W. York, Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.D. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  6. [6]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMATHMathSciNetGoogle Scholar
  8. [8]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    E.P. Verlinde and H.L. Verlinde, RG flow, gravity and the cosmological constant, JHEP 05 (2000) 034 [hep-th/9912018] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    J. de Boer, The Holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [hep-th/0101026] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    A. Lawrence and A. Sever, Holography and renormalization in Lorentzian signature, JHEP 10 (2006) 013 [hep-th/0606022] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    R. Aros, M. Contreras, R. Olea, R. Troncoso and J. Zanelli, Conserved charges for gravity with locally AdS asymptotics, Phys. Rev. Lett. 84 (2000) 1647 [gr-qc/9909015] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Aros, M. Contreras, R. Olea, R. Troncoso and J. Zanelli, Conserved charges for even dimensional asymptotically AdS gravity theories, Phys. Rev. D 62 (2000) 044002 [hep-th/9912045] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    P. Mora, R. Olea, R. Troncoso and J. Zanelli, Finite action principle for Chern-Simons AdS gravity, JHEP 06 (2004) 036 [hep-th/0405267] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    R. Olea, Mass, angular momentum and thermodynamics in four-dimensional Kerr-AdS black holes, JHEP 06 (2005) 023 [hep-th/0504233] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    D.P. Jatkar, G. Kofinas, O. Mišković and R. Olea, Conformal Mass in AdS gravity, arXiv:1404.1411 [INSPIRE].
  22. [22]
    S.W. MacDowell and F. Mansouri, Unified Geometric Theory of Gravity and Supergravity, Phys. Rev. Lett. 38 (1977) 739 [Erratum ibid. 38 (1977) 1376] [INSPIRE].
  23. [23]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    P. van Nieuwenhuizen and D.V. Vassilevich, Consistent boundary conditions for supergravity, Class. Quant. Grav. 22 (2005) 5029 [hep-th/0507172] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  25. [25]
    D.V. Belyaev, Boundary conditions in supergravity on a manifold with boundary, JHEP 01 (2006) 047 [hep-th/0509172] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    D.V. Belyaev and P. van Nieuwenhuizen, Tensor calculus for supergravity on a manifold with boundary, JHEP 02 (2008) 047 [arXiv:0711.2272] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D.V. Belyaev and P. van Nieuwenhuizen, Simple D = 4 supergravity with a boundary, JHEP 09 (2008) 069 [arXiv:0806.4723] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D. Grumiller and P. van Nieuwenhuizen, Holographic counterterms from local supersymmetry without boundary conditions, Phys. Lett. B 682 (2010) 462 [arXiv:0908.3486] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D.V. Belyaev and T.G. Pugh, The Supermultiplet of boundary conditions in supergravity, JHEP 10 (2010) 031 [arXiv:1008.1574] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    G. Esposito, A.Y. Kamenshchik and K. Kirsten, One loop effective action for Euclidean Maxwell theory on manifolds with boundary, Phys. Rev. D 54 (1996) 7328 [hep-th/9606132] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    I.G. Avramidi and G. Esposito, Gauge theories on manifolds with boundary, Commun. Math. Phys. 200 (1999) 495 [hep-th/9710048] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    I.G. Moss, Boundary terms for eleven-dimensional supergravity and M-theory, Phys. Lett. B 577 (2003) 71 [hep-th/0308159] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    I.G. Moss, Boundary terms for supergravity and heterotic M-theory, Nucl. Phys. B 729 (2005) 179 [hep-th/0403106] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    P.S. Howe, T.G. Pugh, K.S. Stelle and C. Strickland-Constable, Ectoplasm with an Edge, JHEP 08 (2011) 081 [arXiv:1104.4387] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L. Castellani, R. D’Auria and P. Fre, Supergravity and superstrings: A Geometric perspective. Vol. 2: Supergravity, World Scientific Singapore, Singapore (1991) 607-1371.CrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.DISAT, Politecnico di TorinoTurinItaly
  2. 2.Istituto Nazionale di Fisica Nucleare (INFN) Sezione di TorinoTurinItaly

Personalised recommendations