Advertisement

Exact tunneling solutions in Minkowski spacetime and a candidate for dark energy

  • Georgios Pastras
Article

Abstract

We study exact tunneling solutions in scalar field theory for potential barriers composed of linear or quadratic patches. We analytically continue our solutions to imaginary Euclidean radius in order to study the profile of the scalar field inside the growing bubble. We find that generally there is a non-trivial profile of the scalar field, generating a stress-energy tensor, that depending on the form of the potential, can be a candidate for dark energy.

Keywords

Solitons Monopoles and Instantons Nonperturbative Effects 

References

  1. [1]
    S.R. Coleman, Fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].ADSGoogle Scholar
  2. [2]
    C.G. Callan Jr. and S.R. Coleman, Fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].ADSGoogle Scholar
  3. [3]
    M.J. Duncan and L.G. Jensen, Exact tunneling solutions in scalar field theory, Phys. Lett. B 291 (1992) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Hamazaki, M. Sasaki, T. Tanaka and K. Yamamoto, Self-excitation of the tunneling scalar field in false vacuum decay, Phys. Rev. D 53 (1996) 2045 [gr-qc/9507006] [INSPIRE].ADSGoogle Scholar
  5. [5]
    K. Koyama, K. Maeda and J. Soda, An open universe from valley bounce, Nucl. Phys. B 580 (2000) 409 [hep-ph/9910556] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.R. Coleman, Spherical symmetry of action minima for Euclidean scalar fields, HUTP-77-A020, Harvard University, Cambridge U.S.A. (1977) [INSPIRE].
  7. [7]
    K.-M. Lee and E.J. Weinberg, Tunneling without barriers, Nucl. Phys. B 267 (1986) 181 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.C. Baker et al., Detection of cosmic microwave background structure in a second field with the cosmic anisotropy telescope, Mon. Not. Roy. Astron. Soc. 308 (1999) 1173 [astro-ph/9904415] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    SDSS collaboration, M. Tegmark et al., Cosmological parameters from SDSS and WMAP, Phys. Rev. D 69 (2004) 103501 [astro-ph/0310723] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  13. [13]
    S. Weinberg, The cosmological constant problems, astro-ph/0005265 [INSPIRE].
  14. [14]
    P.A.M. Dirac, The cosmological constants, Nature 139 (1937) 323 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    P.A.M. Dirac, New basis for cosmology, Proc. Roy. Soc. Lond. A 165 (1938) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Ray, U. Mukhopadhyay and P. Pratim Ghosh, Large number hypothesis: a review, arXiv:0705.1836 [INSPIRE].
  17. [17]
    L. Nottale, Machs principle, Diracs large numbers and the cosmological constant problem (1993).Google Scholar
  18. [18]
    E.J. Copeland, Dynamics of dark energy, AIP Conf. Proc. 957 (2007) 21 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    G.W. Moore, G. Peradze and N. Saulina, Instabilities in heterotic M-theory induced by open membrane instantons, Nucl. Phys. B 607 (2001) 117 [hep-th/0012104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, The ekpyrotic universe: colliding branes and the origin of the hot big bang, Phys. Rev. D 64 (2001) 123522 [hep-th/0103239] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    R. Brandenberger and F. Finelli, On the spectrum of fluctuations in an effective field theory of the ekpyrotic universe, JHEP 11 (2001) 056 [hep-th/0109004] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations