Advertisement

Casting light on BSM physics with SM standard candles

  • David Curtin
  • Prerit Jaiswal
  • Patrick Meade
  • Pin-Ju Tien
Article

Abstract

The Standard Model (SM) has had resounding success in describing almost every measurement performed by the ATLAS and CMS experiments. In particular, these experiments have put many beyond the SM models of natural Electroweak Symmetry Breaking into tension with the data. It is therefore remarkable that it is still the LEP experiment, and not the LHC, which often sets the gold standard for understanding the possibility of new color-neutral states at the electroweak (EW) scale. Recently, ATLAS and CMS have started to push beyond LEP in bounding heavy new EW states, but a gap between the exclusions of LEP and the LHC typically remains. In this paper we show that measurements of SM Standard Candles can be repurposed to set entirely complementary constraints on new physics. To demonstrate this, we use W + W cross section measurements to set bounds on a set of slepton-based simplified models which fill in the gaps left by LEP and dedicated LHC searches. Having demonstrated the sensitivity of the W + W measurement to light sleptons, we also find regions where sleptons can improve the fit of the data compared to the NLO SM W + W prediction alone. Remarkably, in those regions the sleptons also provide for the right relic-density of Bino-like Dark Matter and provide an explanation for the longstanding 3σ discrepancy in the measurement of (g − 2)μ.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with at least two hadronically decaying taus and missing transverse momentum with the ATLAS detector in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, ATLAS-CONF-2013-028 (2013).
  2. [2]
    ATLAS collaboration, Search for supersymmetry in events with four or more leptons in 21 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-036 (2013).
  3. [3]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-035 (2013).
  4. [4]
    ATLAS collaboration, Search for electroweak production of charginos, neutralinos, and sleptons using leptonic final states in pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-SUS-12-022 (2012).
  5. [5]
    CMS collaboration, Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 11 (2012) 147 [arXiv:1209.6620] [INSPIRE].
  6. [6]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-035 (2013).
  7. [7]
    ALEPH collaboration, A. Heister et al., Search for scalar leptons in e + e collisions at center-of-mass energies up to 209 GeV, Phys. Lett. B 526 (2002) 206 [hep-ex/0112011] [INSPIRE].
  8. [8]
    ALEPH collaboration, A. Heister et al., Absolute mass lower limit for the lightest neutralino of the MSSM from e + e data at s 1/2 up to 209 GeV, Phys. Lett. B 583 (2004) 247 [INSPIRE].
  9. [9]
    L3 collaboration, P. Achard et al., Search for scalar leptons and scalar quarks at LEP, Phys. Lett. B 580 (2004) 37 [hep-ex/0310007] [INSPIRE].
  10. [10]
    DELPHI collaboration, J. Abdallah et al., Searches for supersymmetric particles in e + e collisions up to 208 GeV and interpretation of the results within the MSSM, Eur. Phys. J. C 31 (2003)421 [hep-ex/0311019] [INSPIRE].
  11. [11]
    OPAL collaboration, G. Abbiendi et al., Search for anomalous production of dilepton events with missing transverse momentum in e + e collisions at \( \sqrt{s} \) = 183 GeV to 209 GeV, Eur. Phys. J. C 32 (2004) 453 [hep-ex/0309014] [INSPIRE].
  12. [12]
  13. [13]
    Particle Data Group collaboration, Charginos hiding in plain sight, http://pdg.lbl.gov/2012/reviews/rpp2012-rev-g-2-muon-anom-mag-moment.pdf.
  14. [14]
    D. Curtin, P. Jaiswal and P. Meade, Charginos hiding in plain sight, Phys. Rev. D 87 (2013), no. 3 031701 [arXiv:1206.6888] [INSPIRE].
  15. [15]
    M. Lisanti and N. Weiner, Electroweakinos hiding in Higgs searches, Phys. Rev. D 85 (2012) 115005 [arXiv:1112.4834] [INSPIRE].ADSGoogle Scholar
  16. [16]
    ATLAS collaboration, Measurement of W + W production in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector and limits on anomalous WWZ and WWγ couplings, Phys. Rev. D 87 (2013) 112001 [arXiv:1210.2979] [INSPIRE].
  17. [17]
    ATLAS collaboration, Measurement of WW production rate, CMS-PAS-SMP-12-005 (2012).
  18. [18]
    ATLAS collaboration, Measurement of WW production rate, CMS-PAS-SMP-12-013 (2012).
  19. [19]
    K. Rolbiecki and K. Sakurai, Light stops emerging in WW cross section measurements?, arXiv:1303.5696 [INSPIRE].
  20. [20]
    P. Jaiswal, K. Kopp and T. Okui, Higgs production amidst the LHC detector, arXiv:1303.1181 [INSPIRE].
  21. [21]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  22. [22]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].
  23. [23]
    J. Lee et al., CPsuperH: a computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP-violation, Comput. Phys. Commun. 156 (2004) 283 [hep-ph/0307377] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Lee, M. Carena, J. Ellis, A. Pilaftsis and C. Wagner, CPsuperH2.0: an improved computational tool for Higgs phenomenology in the MSSM with explicit CP-violation, Comput. Phys. Commun. 180 (2009) 312 [arXiv:0712.2360] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Lee, M. Carena, J. Ellis, A. Pilaftsis and C. Wagner, CPsuperH2.3: an updated tool for phenomenology in the MSSM with explicit CP-violation, Comput. Phys. Commun. 184 (2013) 1220 [arXiv:1208.2212] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE]. ADSCrossRefGoogle Scholar
  30. [30]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  31. [31]
    W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].
  32. [32]
    N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a TeV, hep-th/0501082 [INSPIRE].
  33. [33]
    R. Mahbubani and L. Senatore, The minimal model for dark matter and unification, Phys. Rev. D 73 (2006) 043510 [hep-ph/0510064] [INSPIRE].ADSGoogle Scholar
  34. [34]
    H.E.S.S. collaboration, B. Giebels, Status and recent results from H.E.S.S., arXiv:1303.2850 [INSPIRE].
  35. [35]
    Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  36. [36]
    S.P. Martin, A supersymmetry primer, in Perspectives on supersymmetry II, G.L. Kane ed., World Scientific, Singapore (2010), hep-ph/9709356 [INSPIRE].
  37. [37]
    N. Arkani-Hamed, A. Delgado and G. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g − 2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).
  41. [41]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  42. [42]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  43. [43]
    CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015 (2012).
  44. [44]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2012).
  45. [45]
    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Kitahara and T. Yoshinaga, Stau with large mass difference and enhancement of the Higgs to diphoton decay rate in the MSSM, JHEP 05 (2013) 035 [arXiv:1303.0461] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner and L.-T. Wang, Light stops, light staus and the 125 GeV Higgs, arXiv:1303.4414 [INSPIRE].
  48. [48]
    J. Girrbach, S. Mertens, U. Nierste and S. Wiesenfeldt, Lepton flavour violation in the MSSM, JHEP 05 (2010) 026 [arXiv:0910.2663] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    G.F. Giudice, P. Paradisi, A. Strumia and A. Strumia, Correlation between the Higgs decay rate to two photons and the muon g − 2, JHEP 10 (2012) 186 [arXiv:1207.6393] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    BaBar collaboration, B. Aubert et al., Measurements of Charged Current Lepton Universality and |V us| using tau lepton decays to e ν e \( \mathop{{n{u_{\tau }}}}\limits^{-},\overline{\mu}{\nu_{\mu }}{{\overline{\nu}}_{\tau }} \) , π ν τ and K ν τ, Phys. Rev. Lett. 105 (2010) 051602 [arXiv:0912.0242] [INSPIRE].
  51. [51]
    ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups collaboration, Precision Electroweak Measurements and Constraints on the Standard Model, arXiv:1012.2367 [INSPIRE].
  52. [52]
    ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group, SLD Heavy Flavor and Electroweak Groups collaboration, D. Abbaneo et al., A Combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0112021 [INSPIRE].
  53. [53]
    P.H. Chankowski et al., ΔR in the MSSM, Nucl. Phys. B 417 (1994) 101 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    D. Curtin, P. Jaiswal, P. Meade and P. Tien, Constraining new electroweak physics with the WW cross-section measurement, in preparation.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • David Curtin
    • 1
  • Prerit Jaiswal
    • 2
  • Patrick Meade
    • 1
  • Pin-Ju Tien
    • 1
  1. 1.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.
  2. 2.Department of PhysicsFlorida State UniversityTallahasseeU.S.A.

Personalised recommendations