Standard model vacuum stability and Weyl consistency conditions

  • Oleg Antipin
  • Marc Gillioz
  • Jens Krog
  • Esben Mølgaard
  • Francesco Sannino


At high energy the standard model possesses conformal symmetry at the classical level. This is reflected at the quantum level by relations between the different β functions of the model. These relations are known as the Weyl consistency conditions. We show that it is possible to satisfy them order by order in perturbation theory, provided that a suitable coupling constant counting scheme is used. As a direct phenomenological application, we study the stability of the standard model vacuum at high energies and compare with previous computations violating the Weyl consistency conditions.


Renormalization Group Conformal and W Symmetry Standard Model 


  1. [1]
    J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    L.N. Mihaila, J. Salomon and M. Steinhauser, Gauge coupling β-functions in the standard model to three loops, Phys. Rev. Lett. 108 (2012) 151602 [arXiv:1201.5868] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Bednyakov, A. Pikelner and V. Velizhanin, Anomalous dimensions of gauge fields and gauge coupling β-functions in the standard model at three loops, JHEP 01 (2013) 017 [arXiv:1210.6873] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A. Bednyakov, A. Pikelner and V. Velizhanin, Yukawa coupling β-functions in the standard model at three loops, Phys. Lett. B 722 (2013) 336 [arXiv:1212.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K. Chetyrkin and M. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the standard model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K. Chetyrkin and M. Zoller, β-function for the Higgs self-interaction in the standard model at three-loop level, JHEP 04 (2013) 091 [arXiv:1303.2890] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Bednyakov, A. Pikelner and V. Velizhanin, Higgs self-coupling β-function in the standard model at three loops, arXiv:1303.4364 [INSPIRE].
  8. [8]
    C. Ford, I. Jack and D. Jones, The standard model effective potential at two loops, Nucl. Phys. B 387 (1992) 373 [Erratum ibid. B 504 (1997) 551-552] [hep-ph/0111190] [INSPIRE].
  9. [9]
    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    I. Masina, The Higgs boson and top quark masses as tests of electroweak vacuum stability, Phys. Rev. D 87 (2013) 053001 [arXiv:1209.0393] [INSPIRE].ADSGoogle Scholar
  13. [13]
    H. Osborn, Derivation of a four-dimensional c theorem, Phys. Lett. B 222 (1989) 97 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    I. Jack and H. Osborn, Analogs for the c theorem for four-dimensional renormalizable field theories, Nucl. Phys. B 343 (1990) 647 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    J.-F. Fortin, B. Grinstein and A. Stergiou, Limit cycles and conformal invariance, JHEP 01 (2013) 184 [arXiv:1208.3674] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    M.A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the asymptotics of 4D quantum field theory, JHEP 01 (2013) 152 [arXiv:1204.5221] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    O. Antipin, M. Gillioz, E. Mølgaard and F. Sannino, The a-theorem for Gauge-Yukawa theories beyond Banks-Zaks, arXiv:1303.1525 [INSPIRE].
  19. [19]
    J.L. Cardy, Is there a c-theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    Z. Komargodski, The constraints of conformal symmetry on RG flows, JHEP 07 (2012) 069 [arXiv:1112.4538] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    O. Antipin, S. Di Chiara, M. Mojaza, E. Molgaard and F. Sannino, A perturbative realization of Miransky scaling, Phys. Rev. D 86 (2012) 085009 [arXiv:1205.6157] [INSPIRE].ADSGoogle Scholar
  24. [24]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  25. [25]
    CMS collaboration, Combination of standard model higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).
  26. [26]
    J. Casas, J. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Casas, J. Espinosa, M. Quirós and A. Riotto, The lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466-468] [hep-ph/9407389] [INSPIRE].
  28. [28]
    G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Oleg Antipin
    • 1
  • Marc Gillioz
    • 1
  • Jens Krog
    • 1
  • Esben Mølgaard
    • 1
  • Francesco Sannino
    • 1
  1. 1.CP3-Origins & the Danish Institute for Advanced Study DIASUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations