A modified naturalness principle and its experimental tests

  • Marco Farina
  • Duccio Pappadopulo
  • Alessandro Strumia


Motivated by LHC results, we modify the usual criterion for naturalness by ignoring the uncomputable power divergences. The Standard Model satisfies the modified criterion (‘finite naturalness’) for the measured values of its parameters. Extensions of the SM motivated by observations (Dark Matter, neutrino masses, the strong CP problem, vacuum instability, inflation) satisfy finite naturalness in special ranges of their parameter spaces which often imply new particles below a few TeV. Finite naturalness bounds are weaker than usual naturalness bounds because any new particle with SM gauge interactions gives a finite contribution to the Higgs mass at two loop order.


Beyond Standard Model Standard Model 


  1. [1]
    G. ’t Hooft, Naturalness, chiral symmetry and spontaneous chiral symmetry breaking, in Recent developments in gauge theories, G. ’t Hooft ed., Plenum Press, U.S.A. (1980).Google Scholar
  2. [2]
    L. Giusti, A. Romanino and A. Strumia, Natural ranges of supersymmetric signals, Nucl. Phys. B 550 (1999) 3 [hep-ph/9811386] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Strumia, Naturalness of supersymmetric models, hep-ph/9904247 [INSPIRE].
  4. [4]
    R. Barbieri and A. Strumia, TheLEP paradox’, hep-ph/0007265 [INSPIRE].
  5. [5]
    H. Baer et al., Radiative natural supersymmetry: reconciling electroweak fine-tuning and the Higgs boson mass, arXiv:1212.2655 [INSPIRE].
  6. [6]
    V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, Anthropic considerations in multiple domain theories and the scale of electroweak symmetry breaking, Phys. Rev. Lett. 80 (1998) 1822 [hep-ph/9801253] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    F. Englert, C. Truffin and R. Gastmans, Conformal invariance in quantum gravity, Nucl. Phys. B 117 (1976) 407 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    W. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391-T (1995).
  9. [9]
    C.T. Hill, Conjecture on the physical implications of the scale anomaly, hep-th/0510177 [INSPIRE].
  10. [10]
    K.A. Meissner and H. Nicolai, Conformal symmetry and the standard model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S. Iso, N. Okada and Y. Orikasa, Classically conformal B L extended standard model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Iso, N. Okada and Y. Orikasa, The minimal B-L model naturally realized at TeV scale, Phys. Rev. D 80 (2009) 115007 [arXiv:0909.0128] [INSPIRE].ADSGoogle Scholar
  14. [14]
    D. Anselmi and M. Taiuti, Renormalization of high-energy Lorentz violating QED, Phys. Rev. D 81 (2010) 085042 [arXiv:0912.0113] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Foot, A. Kobakhidze and R.R. Volkas, Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model, Phys. Rev. D 82 (2010) 035005 [arXiv:1006.0131] [INSPIRE].ADSGoogle Scholar
  16. [16]
    P. Jain, S. Mitra, S. Panda and N.K. Singh, Scale invariance as a solution to the cosmological constant problem, arXiv:1010.3483 [INSPIRE].
  17. [17]
    M. Shaposhnikov and D. Zenhausern, Quantum scale invariance, cosmological constant and hierarchy problem, Phys. Lett. B 671 (2009) 162 [arXiv:0809.3406] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    F. Bezrukov, G.K. Karananas, J. Rubio and M. Shaposhnikov, Higgs-dilaton cosmology: an effective field theory approach, Phys. Rev. D 87 (2013) 096001 [arXiv:1212.4148] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S. Iso and Y. Orikasa, TeV Scale B-L model with a flat Higgs potential at the Planck scaleIn view of the hierarchy problem , PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].
  20. [20]
    C. Englert, J. Jaeckel, V. Khoze and M. Spannowsky, Emergence of the electroweak scale through the Higgs portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K.R. Dienes, Solving the hierarchy problem without supersymmetry or extra dimensions: An Alternative approach, Nucl. Phys. B 611 (2001) 146 [hep-ph/0104274] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs Boson Mass and New Physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, arXiv:1307.3536 [INSPIRE].
  25. [25]
    J. Fleischer and F. Jegerlehner, Radiative corrections to Higgs decays in the extended Weinberg-Salam model, Phys. Rev. D 23 (1981) 2001 [INSPIRE].ADSGoogle Scholar
  26. [26]
    S.P. Martin, Three-loop corrections to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 75 (2007) 055005 [hep-ph/0701051] [INSPIRE].ADSGoogle Scholar
  27. [27]
    K. Chetyrkin and M. Zoller, β-function for the Higgs self-interaction in the Standard Model at three-loop level, JHEP 04 (2013) 091 [arXiv:1303.2890] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Bednyakov, A. Pikelner and V. Velizhanin, Higgs self-coupling β-function in the standard model at three loops, arXiv:1303.4364 [INSPIRE].
  29. [29]
    A. Strumia and F. Vissani, Neutrino masses and mixings and. . . , hep-ph/0606054 [INSPIRE].
  30. [30]
    F. Vissani, Do experiments suggest a hierarchy problem?, Phys. Rev. D 57 (1998) 7027 [hep-ph/9709409] [INSPIRE].ADSGoogle Scholar
  31. [31]
    G. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.P. Martin, Two loop effective potential for a general renormalizable theory and softly broken supersymmetry, Phys. Rev. D 65 (2002) 116003 [hep-ph/0111209] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 2. Yukawa couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Hambye, Y. Lin, A. Notari, M. Papucci and A. Strumia, Constraints on neutrino masses from leptogenesis models, Nucl. Phys. B 695 (2004) 169 [hep-ph/0312203] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Strumia, Sommerfeld corrections to type-II and III leptogenesis, Nucl. Phys. B 809 (2009) 308 [arXiv:0806.1630] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Ma and D. Roy, Heavy triplet leptons and new gauge boson, Nucl. Phys. B 644 (2002) 290 [hep-ph/0206150] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    B. Bajc, M. Nemevšek and G. Senjanović, Probing seesaw at LHC, Phys. Rev. D 76 (2007) 055011 [hep-ph/0703080] [INSPIRE].ADSGoogle Scholar
  41. [41]
    R. Franceschini, T. Hambye and A. Strumia, Type-III see-saw at LHC, Phys. Rev. D 78 (2008) 033002 [arXiv:0805.1613] [INSPIRE].ADSGoogle Scholar
  42. [42]
    F. del Aguila and J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M.A. Schmidt, Renormalization group evolution in the type I + II seesaw model, Phys. Rev. D 76 (2007) 073010 [Erratum ibid. D 85 (2012) 099903] [arXiv:0705.3841] [INSPIRE].ADSGoogle Scholar
  44. [44]
    W. Chao and H. Zhang, One-loop renormalization group equations of the neutrino mass matrix in the triplet seesaw model, Phys. Rev. D 75 (2007) 033003 [hep-ph/0611323] [INSPIRE].ADSGoogle Scholar
  45. [45]
    K. Huitu, J. Maalampi, A. Pietila and M. Raidal, Doubly charged Higgs at LHC, Nucl. Phys. B 487 (1997) 27 [hep-ph/9606311] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Hektor, M. Kadastik, M. Muntel, M. Raidal and L. Rebane, Testing neutrino masses in little Higgs models via discovery of doubly charged Higgs at LHC, Nucl. Phys. B 787 (2007) 198 [arXiv:0705.1495] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E.J. Chun, K.Y. Lee and S.C. Park, Testing Higgs triplet model and neutrino mass patterns, Phys. Lett. B 566 (2003) 142 [hep-ph/0304069] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Muhlleitner and M. Spira, A note on doubly charged Higgs pair production at hadron colliders, Phys. Rev. D 68 (2003) 117701 [hep-ph/0305288] [INSPIRE].ADSGoogle Scholar
  49. [49]
    P. Fileviez Perez, T. Han, G.-Y. Huang, T. Li and K. Wang, Testing a neutrino mass generation mechanism at the LHC, Phys. Rev. D 78 (2008) 071301 [arXiv:0803.3450] [INSPIRE].ADSGoogle Scholar
  50. [50]
    W. Chao, Z.-G. Si, Z.-z. Xing and S. Zhou, Correlative signatures of heavy Majorana neutrinos and doubly-charged Higgs bosons at the Large Hadron Collider, Phys. Lett. B 666 (2008) 451 [arXiv:0804.1265] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    P. Fileviez Perez, T. Han, G.-y. Huang, T. Li and K. Wang, Neutrino masses and the CERN LHC: testing type II seesaw, Phys. Rev. D 78 (2008) 015018 [arXiv:0805.3536] [INSPIRE].ADSGoogle Scholar
  52. [52]
    CMS collaboration, A search for a doubly-charged Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 2189 [arXiv:1207.2666] [INSPIRE].ADSGoogle Scholar
  53. [53]
    T. Hambye, M. Raidal and A. Strumia, Efficiency and maximal CP-asymmetry of scalar triplet leptogenesis, Phys. Lett. B 632 (2006) 667 [hep-ph/0510008] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [arXiv:0803.2932] [INSPIRE].ADSGoogle Scholar
  57. [57]
    S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  60. [60]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].ADSGoogle Scholar
  62. [62]
    R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    P. Junnarkar and A. Walker-Loud, The scalar strange content of the nucleon from lattice QCD, arXiv:1301.1114 [INSPIRE].
  64. [64]
    J. Hisano, K. Ishiwata and N. Nagata, Direct search of dark matter in high-scale supersymmetry, Phys. Rev. D 87 (2013) 035020 [arXiv:1210.5985] [INSPIRE].ADSGoogle Scholar
  65. [65]
    R. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  66. [66]
    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G.G. Raffelt, Axion constraints from white dwarf cooling times, Phys. Lett. B 166 (1986) 402 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Nakagawa, Y. Kohyama and N. Itoh, Axion bremsstrahlung in dense stars, Astrophys. J. 322 (1987) 291.ADSCrossRefMATHGoogle Scholar
  69. [69]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    L. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    J.E. Kim, Weak-interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103.ADSCrossRefGoogle Scholar
  73. [73]
    M.A. Shifman, V.I. Vainstein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493.ADSCrossRefGoogle Scholar
  74. [74]
    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    A. Zhitnitsky, On possible suppression of the axion hadron interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [INSPIRE].Google Scholar
  76. [76]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    M. Gonderinger, H. Lim and M.J. Ramsey-Musolf, Complex scalar singlet dark matter: vacuum stability and phenomenology, Phys. Rev. D 86 (2012) 043511 [arXiv:1202.1316] [INSPIRE].ADSGoogle Scholar
  78. [78]
    L.A. Anchordoqui et al., Vacuum stability of standard model ++, JHEP 02 (2013) 074 [arXiv:1208.2821] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    W. Chao, M. Gonderinger and M.J. Ramsey-Musolf, Higgs vacuum stability, neutrino mass and dark matter, Phys. Rev. D 86 (2012) 113017 [arXiv:1210.0491] [INSPIRE].ADSGoogle Scholar
  80. [80]
    W. Chao, J.-H. Zhang and Y. Zhang, Vacuum stability and Higgs diphoton decay rate in the Zee-Babu model, JHEP 06 (2013) 039 [arXiv:1212.6272] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    P.S.B. Bhupal Dev, D.K. Ghosh, N. Okada and I. Saha, 125 GeV Higgs boson and the type-II seesaw model, JHEP 03 (2013) 150 [Erratum ibid. 1305 (2013) 049] [arXiv:1301.3453] [INSPIRE].ADSGoogle Scholar
  82. [82]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    A.H. Chamseddine and A. Connes, Resilience of the spectral standard model, JHEP 09 (2012) 104 [arXiv:1208.1030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  84. [84]
    L. Knox and M.S. Turner, Inflation at the electroweak scale, Phys. Rev. Lett. 70 (1993) 371 [astro-ph/9209006] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    L. Boyle, S. Farnsworth, J. Fitzgerald and M. Schade, The Minimal Dimensionless Standard Model (MDSM) and its cosmology, arXiv:1111.0273 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Marco Farina
    • 1
  • Duccio Pappadopulo
    • 2
    • 3
  • Alessandro Strumia
    • 4
    • 5
  1. 1.Department of Physics, LEPPCornell UniversityIthacaUSA
  2. 2.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  3. 3.Theoretical Physics Group, Lawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Dipartimento di Fisica dell’Università di Pisa and INFNPisaItalia
  5. 5.National Institute of Chemical Physics and BiophysicsTallinnEstonia

Personalised recommendations