Entanglement entropy in higher derivative holography

  • Arpan Bhattacharyya
  • Apratim Kaviraj
  • Aninda Sinha


We consider holographic entanglement entropy in higher derivative gravity theories. Recently Lewkowycz and Maldacena [1] have provided a method to derive the equations for the entangling surface from first principles. We use this method to compute the entangling surface in four derivative gravity. Certain interesting differences compared to the two derivative case are pointed out. For Gauss-Bonnet gravity, we show that in the regime where this method is applicable, the resulting equations coincide with proposals in the literature as well as with what follows from considerations of the stress tensor on the entangling surface. Finally we demonstrate that the area functional in Gauss-Bonnet holography arises as a counterterm needed to make the Euclidean action free of power law divergences.


Gauge-gravity correspondence AdS-CFT Correspondence 


  1. [1]
    A. Lewkowycz and J.M. Maldacena, Generalized gravitational entropy, arXiv:1304.4926 [INSPIRE].
  2. [2]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetGoogle Scholar
  5. [5]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [INSPIRE].
  10. [10]
    H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].MathSciNetGoogle Scholar
  11. [11]
    D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  13. [13]
    D.V. Fursaev, Entanglement Renyi entropies in conformal field theories and holography, JHEP 05 (2012) 080 [arXiv:1201.1702] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    T. Faulkner, The entanglement Renyi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].
  15. [15]
    T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
  16. [16]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Bhattacharyya and A. Sinha, Entanglement entropy from the holographic stress tensor, arXiv:1303.1884 [INSPIRE].
  20. [20]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  21. [21]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    T.S. Bunch, Surface terms in higher derivative gravity, J. Phys. A 14 (1981) L139.MathSciNetADSGoogle Scholar
  23. [23]
    R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392 [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Yale, Simple counterterms for asymptotically AdS spacetimes in Lovelock gravity, Phys. Rev. D 84 (2011) 104036 [arXiv:1107.1250] [INSPIRE].ADSGoogle Scholar
  25. [25]
    Y. Brihaye and E. Radu, Black objects in the Einstein-Gauss-Bonnet theory with negative cosmological constant and the boundary counterterm method, JHEP 09 (2008) 006 [arXiv:0806.1396] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    A. Bhattacharyya, L.-Y. Hung, K. Sen and A. Sinha, On c-theorems in arbitrary dimensions, Phys. Rev. D 86 (2012) 106006 [arXiv:1207.2333] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  31. [31]
    B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
  32. [32]
    M. Nozaki, S. Ryu and T. Takayanagi, Holographic geometry of entanglement renormalization in quantum field theories, JHEP 10 (2012) 193 [arXiv:1208.3469] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  34. [34]
    J.T. Liu and W.A. Sabra, Hamilton-Jacobi counterterms for Einstein-Gauss-Bonnet gravity, Class. Quant. Grav. 27 (2010) 175014 [arXiv:0807.1256] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. Sinha, On higher derivative gravity, c-theorems and cosmology, Class. Quant. Grav. 28 (2011) 085002 [arXiv:1008.4315] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Deser et al., Critical points of D-dimensional extended gravities, Phys. Rev. D 83 (2011) 061502 [arXiv:1101.4009] [INSPIRE].ADSGoogle Scholar
  38. [38]
    T. Takayanagi, Holographic dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Nozaki, T. Takayanagi and T. Ugajin, Central charges for BCFTs and holography, JHEP 06 (2012) 066 [arXiv:1205.1573] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    A. Bhattacharyya and A. Sinha, Entanglement entropy from surface terms in general relativity, arXiv:1305.3448 [INSPIRE].
  41. [41]
    V. Balasubramanian, B. Czech, B.D. Chowdhury and J. de Boer, The entropy of a hole in spacetime, arXiv:1305.0856 [INSPIRE].
  42. [42]
    D.J. Gross and E. Witten, Superstring modifications of Einsteins equations, Nucl. Phys. B 277 (1986) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    M.B. Green and C. Stahn, D3-branes on the Coulomb branch and instantons, JHEP 09 (2003) 052 [hep-th/0308061] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    M.F. Paulos, Higher derivative terms including the Ramond-Ramond five-form, JHEP 10 (2008) 047 [arXiv:0804.0763] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [INSPIRE].ADSGoogle Scholar
  48. [48]
    W.H. Baron and M. Schvellinger, Quantum corrections to dynamical holographic thermalization: entanglement entropy and other non-local observables, arXiv:1305.2237 [INSPIRE].
  49. [49]
    R.C. Myers and B. Robinson, Black holes in quasi-topological gravity, JHEP 08 (2010) 067 [arXiv:1003.5357] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP 08 (2010) 035 [arXiv:1004.2055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical property of entanglement entropy for excited states, Phys. Rev. Lett. 110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of entanglement entropy from Einstein equation, arXiv:1304.7100 [INSPIRE].
  53. [53]
    G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement temperature and entanglement entropy of excited states, arXiv:1305.3291 [INSPIRE].
  54. [54]
    D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement thermodynamics, arXiv:1305.2728 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Arpan Bhattacharyya
    • 1
  • Apratim Kaviraj
    • 1
  • Aninda Sinha
    • 1
  1. 1.Centre for High Energy Physics, Indian Institute of ScienceBangaloreIndia

Personalised recommendations