Advertisement

Strong signatures of right-handed compositeness

  • Michele Redi
  • Veronica Sanz
  • Maikel de Vries
  • Andreas Weiler
Open Access
Article

Abstract

Right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, that are motivated by flavor physics, one expects large cross sections for the production of new resonances coupled to light quarks. We study experimental strong signatures of right-handed compositeness at the LHC, and constrain the parameter space of these models with recent results by ATLAS and CMS. We show that the LHC sensitivity could be significantly improved if dedicated searches were performed, in particular in multijet signals.

Keywords

Phenomenological Models Hadronic Colliders 

References

  1. [1]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    C. Csáki, TASI lectures on extra dimensions and branes, hep-ph/0404096 [INSPIRE].
  3. [3]
    R. Sundrum, TASI 2004 lectures: to the fifth dimension and back, hep-th/0508134 [INSPIRE].
  4. [4]
    H. Davoudiasl, S. Gopalakrishna, E. Ponton and J. Santiago, Warped 5-dimensional models: phenomenological status and experimental prospects, New J. Phys. 12 (2010) 075011 [arXiv:0908.1968] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R. Contino, The Higgs as a composite Nambu-Goldstone boson, arXiv:1005.4269 [INSPIRE].
  6. [6]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Cacciapaglia et al., A GIM mechanism from extra dimensions, JHEP 04 (2008) 006 [arXiv:0709.1714] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Ultra visible warped model from flavor triviality and improved naturalness, Phys. Rev. D 83 (2011) 115003 [arXiv:1007.0243] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R. Barbieri, G. Isidori and D. Pappadopulo, Composite fermions in electroweak symmetry breaking, JHEP 02 (2009) 029 [arXiv:0811.2888] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Redi, Composite MFV and beyond, Eur. Phys. J. C 72 (2012) 2030 [arXiv:1203.4220] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069 [arXiv:1211.5085] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K. Agashe et al., LHC signals for warped electroweak neutral gauge bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [INSPIRE].ADSGoogle Scholar
  23. [23]
    B. Lillie, L. Randall and L.-T. Wang, The bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K. Agashe, S. Gopalakrishna, T. Han, G.-Y. Huang and A. Soni, LHC signals for warped electroweak charged gauge bosons, Phys. Rev. D 80 (2009) 075007 [arXiv:0810.1497] [INSPIRE].ADSGoogle Scholar
  25. [25]
    K. Agashe et al., LHC signals for coset electroweak gauge bosons in warped/composite PGB Higgs models, Phys. Rev. D 81 (2010) 096002 [arXiv:0911.0059] [INSPIRE].ADSGoogle Scholar
  26. [26]
    ATLAS collaboration, Search for single production of vector-like quarks coupling to light generations in 4.64 fb −1 of data at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-137 (2012).
  27. [27]
    A. Atre, M. Carena, T. Han and J. Santiago, Heavy quarks above the top at the Tevatron, Phys. Rev. D 79 (2009) 054018 [arXiv:0806.3966] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C. Delaunay, C. Grojean and G. Perez, Modified Higgs physics from composite light flavors, arXiv:1303.5701 [INSPIRE].
  29. [29]
    A. Azatov and J. Galloway, Light custodians and Higgs physics in composite models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Atre, M. Chala and J. Santiago, Searches for new vector like quarks: Higgs channels, JHEP 05 (2013) 099 [arXiv:1302.0270] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  35. [35]
    E. Richter-Was, D. Froidevaux and L. Poggioli, ATLFAST 2.0 a fast simulation package for ATLAS, ATL-PHYS-98-131 (1998).
  36. [36]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    O. Domenech, A. Pomarol and J. Serra, Probing the SM with dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].ADSGoogle Scholar
  38. [38]
    ATLAS collaboration, ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 01 (2013) 029 [arXiv:1210.1718] [INSPIRE].ADSGoogle Scholar
  39. [39]
    CMS collaboration, Search for quark compositeness in dijet angular distributions from pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 05 (2012) 055 [arXiv:1202.5535] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution updated using 13.0 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV collected by the ATLAS detector, ATLAS-CONF-2012-148 (2012).
  41. [41]
    CMS collaboration, Search for narrow resonances using the dijet mass spectrum in pp collisions at \( \sqrt{s} \) of 8 TeV, CMS-PAS-EXO-12-016 (2012).
  42. [42]
    CMS collaboration, Search for narrow resonances using the dijet mass spectrum with 19.6 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-12-059 (2012).
  43. [43]
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [INSPIRE].ADSGoogle Scholar
  44. [44]
    ATLAS collaboration, A search for \( t\overline{t} \) resonances in the lepton plus jets final state using 4.66 fb −1 of pp collisions at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-136 (2012).
  45. [45]
    CMS collaboration, Search for anomalous \( t\overline{t} \) production in the highly-boosted all-hadronic final state, JHEP 09 (2012) 029 [arXiv:1204.2488] [INSPIRE].ADSGoogle Scholar
  46. [46]
    R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    ATLAS collaboration, Search for heavy top-like quarks decaying to a Higgs boson and a top quark in the lepton plus jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-018 (2013).
  48. [48]
    J. Mrazek and A. Wulzer, A strong sector at the LHC: top partners in same-sign dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Atre et al., Model-independent searches for new quarks at the LHC, JHEP 08 (2011) 080 [arXiv:1102.1987] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Martin and V. Sanz, Mass-matching in Higgsless, JHEP 01 (2010) 075 [arXiv:0907.3931] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J. Hirn, A. Martin and V. Sanz, Benchmarks for new strong interactions at the LHC, JHEP 05 (2008) 084 [arXiv:0712.3783] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    LHC New Physics Working Group collaboration, D. Alves et al., Simplified models for LHC new physics searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Carmona, M. Chala and J. Santiago, New Higgs production mechanism in composite Higgs models, JHEP 07 (2012) 049 [arXiv:1205.2378] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  56. [56]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  57. [57]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Redi and A. Tesi, Implications of a light Higgs in composite models, JHEP 10 (2012) 166 [arXiv:1205.0232] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Pomarol and F. Riva, The composite Higgs and light resonance connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    D. Pappadopulo, A. Thamm and R. Torre, A minimally tuned composite Higgs model from an extra dimension, JHEP 07 (2013) 058 [arXiv:1303.3062] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    ATLAS collaboration, Search for massive colored scalars in four-jet final states in \( \sqrt{s}=7 \) TeV proton-proton collisions with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1828 [arXiv:1110.2693] [INSPIRE].ADSGoogle Scholar
  64. [64]
    ATLAS collaboration, Search for pair-produced massive coloured scalars in four-jet final states with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013) 2263 [arXiv:1210.4826] [INSPIRE].ADSGoogle Scholar
  65. [65]
    CMS collaboration, Search for new physics in the paired dijet mass spectrum, CMS-PAS-EXO-11-016 (2011).
  66. [66]
    CMS collaboration, Search for three-jet resonances in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 718 (2012) 329 [arXiv:1208.2931] [INSPIRE].ADSGoogle Scholar
  67. [67]
    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \( Wb\overline{b}+n \) jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the tuning and the mass of the composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Gallicchio and M.D. Schwartz, Quark and gluon tagging at the LHC, Phys. Rev. Lett. 107 (2011) 172001 [arXiv:1106.3076] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J. Gallicchio and M.D. Schwartz, Quark and gluon jet substructure, JHEP 04 (2013) 090 [arXiv:1211.7038] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Michele Redi
    • 1
  • Veronica Sanz
    • 2
    • 3
  • Maikel de Vries
    • 4
  • Andreas Weiler
    • 4
  1. 1.INFN — Sezione di FirenzeSesto FiorentinoItaly
  2. 2.Department of Physics and AstronomyYork UniversityTorontoCanada
  3. 3.Department of Physics and AstronomyUniversity of SussexBrightonUK
  4. 4.DESYHamburgGermany

Personalised recommendations