Advertisement

Non-perturbative gauge/gravity correspondence in \( \mathcal{N} \) = 2 theories

  • M. Billó
  • M. Frau
  • F. Fucito
  • L. Giacone
  • A. Lerda
  • J. F. Morales
  • D. Ricci Pacifici
Article

Abstract

We derive the exact supergravity profile for the twisted scalar field emitted by a system of fractional D3 branes at a \( {\mathbb{Z}_2} \) orbifold singularity supporting \( \mathcal{N} \) = 2 quiver gauge theories with unitary groups and bifundamental matter. At the perturbative level this twisted field is “dual” to the gauge coupling but it is corrected non-perturbatively by an infinite tower of fractional D-instantons. The explicit microscopic description allows to derive the gravity profile from disk amplitudes computing the emission rate of the twisted scalar field in terms of chiral correlators in the dual gauge theory. We compute these quantum correlators using multi-instanton localization techniques and/or Seiberg-Witten analysis. Finally, we discuss a non-perturbative relation between the twisted scalar and the effective coupling of the gauge theory for some simple choices of the brane set ups.

Keywords

Gauge-gravity correspondence D-branes Supersymmetric Effective Theories 

References

  1. [1]
    E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    M.R. Douglas, Branes within branes, hep-th/9512077 [INSPIRE].
  3. [3]
    M.B. Green and M. Gutperle, D-instanton induced interactions on a D3-brane, JHEP 02 (2000) 014 [hep-th/0002011] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    M. Billó et al., Classical gauge instantons from open strings, JHEP 02 (2003) 045 [hep-th/0211250] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F. Bigazzi, A. Cotrone, M. Petrini and A. Zaffaroni, Supergravity duals of supersymmetric four-dimensional gauge theories, Riv. Nuovo Cim. 25N12 (2002) 1 [hep-th/0303191] [INSPIRE].Google Scholar
  6. [6]
    M. Bertolini, Four lectures on the gauge/gravity correspondence, Int. J. Mod. Phys. A 18 (2003) 5647 [hep-th/0303160] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    C. Núñez, A. Paredes and A.V. Ramallo, Unquenched flavor in the gauge/gravity correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].Google Scholar
  8. [8]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in \( \mathcal{N} \) = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in \( \mathcal{N} \) = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    G.W. Moore, N. Nekrasov and S. Shatashvili, D-particle bound states and generalized instantons, Commun. Math. Phys. 209 (2000) 77 [hep-th/9803265] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  11. [11]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetGoogle Scholar
  12. [12]
    R. Flume and R. Poghossian, An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].
  15. [15]
    U. Bruzzo and F. Fucito, Superlocalization formulas and supersymmetric Yang-Mills theories, Nucl. Phys. B 678 (2004) 638 [math-ph/0310036] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    M. Billó, M. Frau, F. Fucito and A. Lerda, Instanton calculus in RR background and the topological string, JHEP 11 (2006) 012 [hep-th/0606013] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Ito, H. Nakajima and S. Sasaki, Instanton calculus in RR 3-form background and deformed \( \mathcal{N} \) = 2 super Yang-Mills theory, JHEP 12 (2008) 113 [arXiv:0811.3322] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    M. Billó et al., Exotic instanton counting and heterotic/type-I duality, JHEP 07 (2009) 092 [arXiv:0905.4586] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F. Fucito, J.F. Morales and R. Poghossian, Exotic prepotentials from D(−1)D7 dynamics, JHEP 10 (2009) 041 [arXiv:0906.3802] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    K. Ito, H. Nakajima, T. Saka and S. Sasaki, \( \mathcal{N} \) = 2 instanton effective action in Ω-background and D3/D(−1)-brane system in RR background, JHEP 11 (2010) 093 [arXiv:1009.1212] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Billó et al., Stringy instanton corrections to \( \mathcal{N} \) = 2 gauge couplings, JHEP 05 (2010) 107 [arXiv:1002.4322] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    H. Ghorbani, D. Musso and A. Lerda, Stringy instanton effects in \( \mathcal{N} \) = 2 gauge theories, JHEP 03 (2011) 052 [arXiv:1012.1122] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    H. Ghorbani and D. Musso, Stringy instantons in SU(N ) N = 2 non-conformal gauge theories, JHEP 12 (2011) 070 [arXiv:1111.0842] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    M. Billó, M. Frau, L. Giacone and A. Lerda, Holographic non-perturbative corrections to gauge couplings, JHEP 08 (2011) 007 [arXiv:1105.1869] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    F. Fucito, J. Morales and D.R. Pacifici, Multi instanton tests of holography, JHEP 09 (2011) 120 [arXiv:1106.3526] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Billó, M. Frau, L. Giacone and A. Lerda, Non-perturbative gauge couplings from holography, arXiv:1201.4231 [INSPIRE].
  27. [27]
    I.R. Klebanov and N.A. Nekrasov, Gravity duals of fractional branes and logarithmic RG flow, Nucl. Phys. B 574 (2000) 263 [hep-th/9911096] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    M. Bertolini et al., Fractional D-branes and their gauge duals, JHEP 02 (2001) 014 [hep-th/0011077] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J. Polchinski, \( \mathcal{N} \) = 2 gauge/gravity duals, Int. J. Mod. Phys. A 16 (2001) 707 [hep-th/0011193] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda and R. Marotta, \( \mathcal{N} \) = 2 gauge theories on systems of fractional D3/D7 branes, Nucl. Phys. B 621 (2002) 157 [hep-th/0107057] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Petrini, R. Russo and A. Zaffaroni, \( \mathcal{N} \) = 2 gauge theories and systems with fractional branes, Nucl. Phys. B 608 (2001) 145 [hep-th/0104026] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    M. Billó, L. Gallot and A. Liccardo, Classical geometry and gauge duals for fractional branes on ALE orbifolds, Nucl. Phys. B 614 (2001) 254 [hep-th/0105258] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    C.V. Johnson, A.W. Peet and J. Polchinski, Gauge theory and the excision of repulson singularities, Phys. Rev. D 61 (2000) 086001 [hep-th/9911161] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    F. Benini, M. Bertolini, C. Closset and S. Cremonesi, The \( \mathcal{N} \) = 2 cascade revisited and the enhancon bearings, Phys. Rev. D 79 (2009) 066012 [arXiv:0811.2207] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    S. Cremonesi, Transmutation of \( \mathcal{N} \) = 2 fractional D3 branes into twisted sector fluxes, J. Phys. A 42 (2009) 325401 [arXiv:0904.2277] [INSPIRE].MathSciNetGoogle Scholar
  36. [36]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    P.C. Argyres and S. Pelland, Comparing instanton contributions with exact results in \( \mathcal{N} \) = 2 supersymmetric scale invariant theories, JHEP 03 (2000) 014 [hep-th/9911255] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    R. Flume, F. Fucito, J.F. Morales and R. Poghossian, Matones relation in the presence of gravitational couplings, JHEP 04 (2004) 008 [hep-th/0403057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    M. Billó, L. Gallot, A. Lerda and I. Pesando, F-theoretic versus microscopic description of a conformal \( \mathcal{N} \) = 2 SYM theory, JHEP 11 (2010) 041 [arXiv:1008.5240] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    F. Fucito, J. Morales, D.R. Pacifici and R. Poghossian, Gauge theories on Ω-backgrounds from non commutative Seiberg-Witten curves, JHEP 05 (2011) 098 [arXiv:1103.4495] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J.A. Minahan and D. Nemeschansky, Hyperelliptic curves for supersymmetric Yang-Mills, Nucl. Phys. B 464 (1996) 3 [hep-th/9507032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    J.A. Minahan and D. Nemeschansky, \( \mathcal{N} \) = 2 super Yang-Mills and subgroups of SL(2, Z), Nucl. Phys. B 468 (1996) 72 [hep-th/9601059] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    O. Aharony and S. Yankielowicz, Exact electric-magnetic duality in \( \mathcal{N} \) = 2 supersymmetric QCD theories, Nucl. Phys. B 473 (1996) 93 [hep-th/9601011] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    S.K. Donaldson and P.B. Kronheimer, The geometry of four-manifolds, Oxford Science Publications, U.S.A. (1997).MATHGoogle Scholar
  45. [45]
    S. Shadchin, Saddle point equations in Seiberg-Witten theory, JHEP 10 (2004) 033 [hep-th/0408066] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    F. Fucito, J.F. Morales and R. Poghossian, Instantons on quivers and orientifolds, JHEP 10 (2004) 037 [hep-th/0408090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • M. Billó
    • 1
  • M. Frau
    • 1
  • F. Fucito
    • 2
  • L. Giacone
    • 1
  • A. Lerda
    • 3
  • J. F. Morales
    • 2
  • D. Ricci Pacifici
    • 2
  1. 1.Università degli Studi di Torino, Dipartimento di Fisica and I.N.F.N. — Sezione di TorinoTorinoItaly
  2. 2.I.N.F.N. — Sezione di Roma 2 and Università di Roma Tor Vergata, Dipartimento di FisicaRomaItaly
  3. 3.Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica and I.N.F.N. — Gruppo Collegato di Alessandria — Sezione di TorinoAlessandriaItaly

Personalised recommendations