Advertisement

General neutralino NLSPs at the early LHC

  • Joshua T. Ruderman
  • David Shih
Article

Abstract

Gauge mediated supersymmetry breaking (GMSB) is a theoretically well-motivated framework with rich and varied collider phenomenology. In this paper, we study the Tevatron limits and LHC discovery potential for a wide class of GMSB scenarios in which the next-to-lightest superpartner (NLSP) is a promptly-decaying neutralino. These scenarios give rise to signatures involving hard photons, W ’s, Z’s, jets and/or higgses, plus missing energy. In order to characterize these signatures, we define a small number of minimal spectra, in the context of General Gauge Mediation, which are parameterized by the mass of the NLSP and the gluino. Using these minimal spectra, we determine the most promising discovery channels for general neutralino NLSPs. We find that the 2010 dataset can already cover new ground with strong production for all NLSP types. With the upcoming 2011-2012 dataset, we find that the LHC will also have sensitivity to direct electroweak production of neutralino NLSPs.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].Google Scholar
  2. [2]
    S. Dimopoulos, M. Dine, S. Raby and S.D. Thomas, Experimental signatures of low-energy gauge mediated supersymmetry breaking, Phys. Rev. Lett. 76 (1996) 3494 [hep-ph/9601367] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Dimopoulos, M. Dine, S. Raby, S.D. Thomas and J.D. Wells, Phenomenological implications of low-energy supersymmetry breaking, Nucl. Phys. Proc. Suppl. 52A (1997) 38 [hep-ph/9607450] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Dimopoulos, S.D. Thomas and J.D. Wells, Sparticle spectroscopy and electroweak symmetry breaking with gauge mediated supersymmetry breaking, Nucl. Phys. B 488 (1997) 39 [hep-ph/9609434] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Ambrosanio, G.D. Kribs and S.P. Martin, Signals for gauge mediated supersymmetry breaking models at the CERN LEP-2 collider, Phys. Rev. D 56 (1997) 1761 [hep-ph/9703211] [INSPIRE].ADSGoogle Scholar
  6. [6]
    H. Baer, P. Mercadante, X. Tata and Y.-l. Wang, The reach of Tevatron upgrades in gauge mediated supersymmetry breaking models, Phys. Rev. D 60 (1999) 055001 [hep-ph/9903333] [INSPIRE].ADSGoogle Scholar
  7. [7]
    K.T. Matchev and S.D. Thomas, Higgs and Z boson signatures of supersymmetry, Phys. Rev. D 62 (2000) 077702 [hep-ph/9908482] [INSPIRE].ADSGoogle Scholar
  8. [8]
    SUSY Working Group collaboration, R.L. Culbertson et al., Low scale and gauge mediated supersymmetry breaking at the Fermilab Tevatron Run II, hep-ph/0008070 [INSPIRE].
  9. [9]
    P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009)143 [arXiv:0801.3278] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  10. [10]
    M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring general gauge mediation, JHEP 03 (2009)016 [arXiv:0812.3668] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    P. Meade, M. Reece and D. Shih, Prompt decays of general neutralino NLSPs at the Tevatron, JHEP 05 (2010) 105 [arXiv:0911.4130] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    H. Baer, P.G. Mercadante, X. Tata and Y.-l. Wang, The reach of the CERN Large Hadron Collider for gauge mediated supersymmetry breaking models, Phys. Rev. D 62 (2000) 095007 [hep-ph/0004001] [INSPIRE].ADSGoogle Scholar
  13. [13]
    P. Meade, M. Reece and D. Shih, Long-lived neutralino NLSPs, JHEP 10 (2010) 067 [arXiv:1006.4575] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.T. Ruderman and D. Shih, Slepton co-NLSPs at the Tevatron, JHEP 11 (2010) 046 [arXiv:1009.1665] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L.M. Carpenter, Surveying the phenomenology of general gauge mediation, arXiv:0812.2051 [INSPIRE].
  16. [16]
    A. Rajaraman, Y. Shirman, J. Smidt and F. Yu, Parameter space of general gauge mediation, Phys. Lett. B 678 (2009) 367 [arXiv:0903.0668] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Abel, M.J. Dolan, J. Jaeckel and V.V. Khoze, Phenomenology of pure general gauge mediation, JHEP 12 (2009) 001 [arXiv:0910.2674] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    A. Katz and B. Tweedie, Signals of a sneutrino (N)LSP at the LHC, Phys. Rev. D 81 (2010) 035012 [arXiv:0911.4132] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A. Katz and B. Tweedie, Leptophilic signals of a sneutrino (N)LSP and flavor biases from flavor-blind SUSY, Phys. Rev. D 81 (2010) 115003 [arXiv:1003.5664] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Abel, M.J. Dolan, J. Jaeckel and V.V. Khoze, Pure general gauge mediation for early LHC searches, JHEP 12 (2010) 049 [arXiv:1009.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A.M. Thalapillil, Low-energy observables and general gauge mediation in the MSSM and NMSSM, JHEP 06 (2011) 059 [arXiv:1012.4829] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Jaeckel, V.V. Khoze and C. Wymant, Mass sum rules and the role of the messenger scale in general gauge mediation, JHEP 04 (2011) 126 [arXiv:1102.1589] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Jaeckel, V.V. Khoze and C. Wymant, RG invariants, unification and the role of the messenger scale in general gauge mediation, JHEP 05 (2011) 132 [arXiv:1103.1843] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    H. Baer, P.G. Mercadante, F. Paige, X. Tata and Y. Wang, LHC reach for gauge mediated supersymmetry breaking models via prompt photon channels, Phys. Lett. B 435 (1998) 109 [hep-ph/9806290] [INSPIRE].ADSGoogle Scholar
  25. [25]
    E. Nakamura and S. Shirai, Discovery potential for low-scale gauge mediation at early LHC, JHEP 03 (2011) 115 [arXiv:1010.5995] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Dube, J. Glatzer, S. Somalwar, A. Sood and S. Thomas, Addressing the multi-channel inverse problem at high energy colliders: a model independent approach to the search for new physics with trileptons, J. Phys. G 39 (2012) 085004 [arXiv:0808.1605] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Model-independent jets plus missing energy searches, Phys. Rev. D 79 (2009) 015005 [arXiv:0809.3264] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J. Alwall, P. Schuster and N. Toro, Simplified models for a first characterization of new physics at the LHC, Phys. Rev. D 79 (2009) 075020 [arXiv:0810.3921] [INSPIRE].ADSGoogle Scholar
  32. [32]
    D.S. Alves, E. Izaguirre and J.G. Wacker, Where the sidewalk ends: jets and missing energy search strategies for the 7 TeV LHC, JHEP 10 (2011) 012 [arXiv:1102.5338] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    LHC New Physics Working Group collaboration, D. Alves et al., Simplified models for LHC new physics searches, arXiv:1105.2838 [INSPIRE].
  34. [34]
    D0 collaboration, V.M. Abazov et al., Search for diphoton events with large missing transverse energy in 6.3 fb −1 of \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;\;TeV \), Phys. Rev. Lett. 105 (2010) 221802 [arXiv:1008.2133] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    CDF collaboration, A. Abulencia et al., Search for new physics in lepton + photon + X events with 929 pb −1 of \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;\;TeV \), Phys. Rev. D 75 (2007) 112001 [hep-ex/0702029] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D0 collaboration, V. Abazov et al., Search for squarks and gluinos in events with jets and missing transverse energy using 2.1 fb −1 of \( p\overline p \) collision data at \( \sqrt {s} = 1.96\;\;TeV \), Phys. Lett. B 660 (2008)449 [arXiv:0712.3805] [INSPIRE].ADSGoogle Scholar
  37. [37]
    CDF collaboration, Search for gaugino production in the W + Z + missing transverse energy final state, CDF Public Note 9791.Google Scholar
  38. [38]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = 7\;\;TeV \) in events with two photons and missing transverse energy,Phys. Rev. Lett. 106 (2011) 211802 [arXiv:1103.0953] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [INSPIRE].ADSGoogle Scholar
  40. [40]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;\;TeV \) proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].ADSGoogle Scholar
  41. [41]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;\;TeV \) pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Thaler and Z. Thomas, Goldstini can give the Higgs a boost, JHEP 07 (2011) 060 [arXiv:1103.1631] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S.P. Martin and P. Ramond, Sparticle spectrum constraints, Phys. Rev. D 48 (1993) 5365 [hep-ph/9306314] [INSPIRE].ADSGoogle Scholar
  44. [44]
    W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSGoogle Scholar
  45. [45]
    W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Conway, PGS: Pretty Good Simulator, http://physics.ucdavis.edu/˜conway/research/ software/pgs/pgs4-general.htm.
  48. [48]
    CMS collaboration, Data-driven background estimates for SUSY di-photon searches CMS-PAS-SUS-09-004 (2009).Google Scholar
  49. [49]
    T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].ADSGoogle Scholar
  50. [50]
    CDF collaboration, A. Abulencia et al., Inclusive search for new physics with like-sign dilepton events in pp collisions at \( \sqrt {s} = 1.96\;\;TeV \), Phys. Rev. Lett. 98 (2007) 221803 [hep-ex/0702051] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J.M. Campbell and R. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    ATLAS collaboration, SUSY Searches at ATLAS in multilepton final states with jets and missing transverse energy, ATLAS-CONF-2011-039 (2011).Google Scholar
  55. [55]
    CMS collaboration, S. Chatrchyan et al., Search for physics beyond the standard model in opposite-sign dilepton events at \( \sqrt {s} = 7\;\;TeV \), JHEP 06 (2011) 026 [arXiv:1103.1348] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonU.S.A
  2. 2.New High Energy Theory Center, Department of Physics and Astronomy Rutgers UniversityPiscatawayU.S.A

Personalised recommendations