# A distinguished vacuum state for a quantum field in a curved spacetime: formalism, features, and cosmology

- 129 Downloads
- 19 Citations

## Abstract

We define a distinguished “ground state” or “vacuum” for a free scalar quantum field in a globally hyperbolic region of an arbitrarily curved spacetime. Our prescription is motivated by the recent construction [1, 2] of a quantum field theory on a background causal set using only knowledge of the retarded Green’s function. We generalize that construction to continuum spacetimes and find that it yields a distinguished *vacuum* or *ground state* for a non-interacting, massive or massless scalar field. This state is defined for all compact regions and for many noncompact ones. In a static spacetime we find that our vacuum coincides with the usual ground state. We determine it also for a radiation-filled, spatially homogeneous and isotropic cosmos, and show that the super-horizon correlations are approximately the same as those of a thermal state. Finally, we illustrate the inherent non-locality of our prescription with the example of a spacetime which sandwiches a region with curvature in-between flat initial and final regions.

## Keywords

Nonperturbative Effects Space-Time Symmetries Thermal Field Theory Cosmology of Theories beyond the SM## References

- [1]S. Johnston,
*Feynman Propagator for a Free Scalar Field on a Causal Set*,*Phys. Rev. Lett.***103**(2009) 180401 [arXiv:0909.0944] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [2]R.D. Sorkin,
*Scalar Field Theory on a Causal Set in Histories Form*,*J. Phys. Conf. Ser.***306**(2011) 012017 [arXiv:1107.0698] [INSPIRE].ADSCrossRefGoogle Scholar - [3]S. Hawking,
*Particle Creation by Black Holes*,*Commun. Math. Phys.***43**(1975) 199 [*Erratum ibid.***46**(1976) 206-206] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [4]J. Bisognano and E. Wichmann,
*On the Duality Condition for a Hermitian Scalar Field*,*J. Math. Phys*.**16**(1975) 985 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar - [5]
- [6]V.F. Mukhanov, H. Feldman and R.H. Brandenberger,
*Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions*,*Phys. Rept*.**215**(1992) 203 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [7]
- [8]R. Wald,
*Quantum field theory in curved spacetime and black hole thermodynamics*, Chicago lectures in physics, University of Chicago Press, Chicago U.S.A. (1994).Google Scholar - [9]
- [10]F. Dowker, S. Johnston and R.D. Sorkin,
*Hilbert Spaces from Path Integrals*,*J. Phys.***A 43**(2010) 275302 [arXiv:1002.0589] [INSPIRE].MathSciNetADSGoogle Scholar - [11]D. Sorkin, Rafael,
*Quantum mechanics as quantum measure theory*,*Mod. Phys. Lett.***A 9**(1994) 3119 [gr-qc/9401003] [INSPIRE].MathSciNetADSGoogle Scholar - [12]
- [13]J.B. Hartle,
*Space-time quantum mechanics and the quantum mechanics of space-time*, gr-qc/9304006 [INSPIRE]. - [14]A. Ashtekar and A. Magnon-Ashtekar,
*A curiosity concerning the role of coherent states in quantum field theory*,*Pramana***15**(1980) 107.ADSCrossRefGoogle Scholar - [15]M. Reed and B. Simon,
*I: Functional Analysis, Volume 1 (Methods of Modern Mathematical Physics) (vol 1)*, Academic Press (1981).Google Scholar - [16]C.J. Fewster and R. Verch,
*On a Recent Construction of*’*Vacuum-like*’*Quantum Field States in Curved Spacetime*, arXiv:1206.1562 [INSPIRE]. - [17]N. Afshordi et al.,
*A Ground State for the Causal Diamond in 2 Dimensions*, arXiv:1207.7101 [INSPIRE]. - [18]N. Afshordi, S. Aslanbeigi, M. Buck, F. Dowker and R. Sorkin, in preparation.Google Scholar
- [19]S. Fulling,
*Remarks on positive frequency and hamiltonians in expanding universes*,*Gen. Rel. Grav*.**10**(1979) 807 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar - [20]C. Dappiaggi, T.-P. Hack and N. Pinamonti,
*Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes*,*Annales Henri Poincaré***12**(2011) 1449 [arXiv:1009.5179] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar - [21]N. Birrell and P. Davies,
*Quantum Fields in Curved Space*, Cambridge University Press, Cambridge U.K. (1982).MATHCrossRefGoogle Scholar - [22]F.W. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark,
*NIST Handbook of Mathematical Functions*, Cambridge University Press, New York U.S.A. (2010).MATHGoogle Scholar