Advertisement

The sphaleron rate through the electroweak cross-over

  • Michela D’Onofrio
  • Kari Rummukainen
  • Anders Tranberg
Article

Abstract

Using lattice simulations, we measure the sphaleron rate in the Standard Model as a function of temperature through the electroweak cross-over, for the Higgs masses m H  = 115 and m H  = 160 GeV. We pay special attention to the shutting off of the baryon rate as the temperature is lowered. This quantity enters computations of Baryogenesis via Leptogenesis, where non-zero lepton number is converted into non-zero baryon number by equilibrium sphaleron transitions. Combining existing numerical methods applicable in the symmetric and broken electroweak phases, we find the temperature dependence of the sphaleron rate at very high temperature, through the electroweak cross-over transition, and deep into the broken phase.

Keywords

Lattice Gauge Field Theories Thermal Field Theory 

References

  1. [1]
    V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    V. Rubakov and M. Shaposhnikov, Electroweak baryon number nonconservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493 [Phys. Usp. 39 (1996) 461] [hep-ph/9603208] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. D 18 (1978) 2199] [INSPIRE].ADSGoogle Scholar
  4. [4]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at m Hm W ?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, The electroweak phase transition: a nonperturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine and M.E. Shaposhnikov, The universality class of the electroweak theory, Nucl. Phys. B 532 (1998) 283 [hep-lat/9805013] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys. Rev. Lett. 82 (1999) 21 [hep-ph/9809291] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Y. Aoki, F. Csikor, Z. Fodor and A. Ukawa, The endpoint of the first order phase transition of the SU(2) gauge Higgs model on a four-dimensional isotropic lattice, Phys. Rev. D 60 (1999) 013001 [hep-lat/9901021] [INSPIRE].ADSGoogle Scholar
  9. [9]
    F.R. Klinkhamer and N. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE].ADSGoogle Scholar
  10. [10]
    O. Philipsen, The sphaleron rate in thesymmetricelectroweak phase, Phys. Lett. B 358 (1995) 210 [hep-ph/9506478] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Ambjørn and A. Krasnitz, The classical sphaleron transition rate exists and is equal to 1.1(α w T)4, Phys. Lett. B 362 (1995) 97 [hep-ph/9508202] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Ambjørn and A. Krasnitz, Improved determination of the classical sphaleron transition rate, Nucl. Phys. B 506 (1997) 387 [hep-ph/9705380] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G.D. Moore and K. Rummukainen, Classical sphaleron rate on fine lattices, Phys. Rev. D 61 (2000) 105008 [hep-ph/9906259] [INSPIRE].ADSGoogle Scholar
  14. [14]
    P.B. Arnold, D. Son and L.G. Yaffe, The hot baryon violation rate is \(O\left( {\alpha_w^5{T^4}} \right)\), Phys. Rev. D 55 (1997) 6264 [hep-ph/9609481] [INSPIRE].ADSGoogle Scholar
  15. [15]
    P.B. Arnold, Hot B violation, the lattice and hard thermal loops, Phys. Rev. D 55 (1997) 7781 [hep-ph/9701393] [INSPIRE].ADSGoogle Scholar
  16. [16]
    G.D. Moore, C.-R. Hu and B. Müller, Chern-Simons number diffusion with hard thermal loops, Phys. Rev. D 58 (1998) 045001 [hep-ph/9710436] [INSPIRE].ADSGoogle Scholar
  17. [17]
    D. Bödeker, G.D. Moore and K. Rummukainen, Chern-Simons number diffusion and hard thermal loops on the lattice, Phys. Rev. D 61 (2000) 056003 [hep-ph/9907545] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D. Bödeker, On the effective dynamics of soft non-Abelian gauge fields at finite temperature, Phys. Lett. B 426 (1998) 351 [hep-ph/9801430] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G.D. Moore, The sphaleron rate: Bodekers leading log, Nucl. Phys. B 568 (2000) 367 [hep-ph/9810313] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P.B. Arnold and L.G. Yaffe, The non-Abelian Debye screening length beyond leading order, Phys. Rev. D 52 (1995) 7208 [hep-ph/9508280] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P.B. Arnold and L.G. Yaffe, High temperature color conductivity at next-to-leading log order, Phys. Rev. D 62 (2000) 125014 [hep-ph/9912306] [INSPIRE].ADSGoogle Scholar
  22. [22]
    W.-H. Tang and J. Smit, Chern-Simons diffusion rate near the electroweak phase transition for m Hm W, Nucl. Phys. B 482 (1996) 265 [hep-lat/9605016] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G.D. Moore, Sphaleron rate in the symmetric electroweak phase, Phys. Rev. D 62 (2000) 085011 [hep-ph/0001216] [INSPIRE].ADSGoogle Scholar
  24. [24]
    G.D. Moore, Measuring the broken phase sphaleron rate nonperturbatively, Phys. Rev. D 59 (1999) 014503 [hep-ph/9805264] [INSPIRE].ADSGoogle Scholar
  25. [25]
    G.D. Moore, A nonperturbative measurement of the broken phase sphaleron rate, Phys. Lett. B 439 (1998) 357 [hep-ph/9801204] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H. Shanahan and A. Davis, The Chern-Simons number as an order parameter: classical sphaleron transitions for SU(2) Higgs field theories for a Higgs mass approximately equal to 120 GeV, Phys. Lett. B 431 (1998) 135 [hep-ph/9804203] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Y. Burnier, M. Laine and M. Shaposhnikov, Baryon and lepton number violation rates across the electroweak crossover, JCAP 02 (2006) 007 [hep-ph/0511246] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A.G. Cohen, D. Kaplan and A. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Luty, Baryogenesis via leptogenesis, Phys. Rev. D 45 (1992) 455 [INSPIRE].ADSGoogle Scholar
  32. [32]
    A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96 (1980) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the standard model, Nucl. Phys. B 458 (1996) 90 [hep-ph/9508379] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, 3D physics and the electroweak phase transition: perturbation theory, Nucl. Phys. B 425 (1994) 67 [hep-ph/9404201] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    K. Farakos, K. Kajantie, K. Rummukainen and M. Shaposhnikov, 3D physics and the electroweak phase transition: a framework for lattice Monte Carlo analysis, Nucl. Phys. B 442 (1995) 317 [hep-lat/9412091] [INSPIRE].ADSGoogle Scholar
  36. [36]
    P.H. Ginsparg, First order and second order phase transitions in gauge theories at finite temperature, Nucl. Phys. B 170 (1980) 388 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    T. Appelquist and R.D. Pisarski, High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics, Phys. Rev. D 23 (1981) 2305 [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Nadkarni, Dimensional reduction in hot QCD, Phys. Rev. D 27 (1983) 917 [INSPIRE].ADSGoogle Scholar
  39. [39]
    N. Landsman, Limitations to dimensional reduction at high temperature, Nucl. Phys. B 322 (1989) 498 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Jakovac, K. Kajantie and A. Patkos, A hierarchy of effective field theories of hot electroweak matter, Phys. Rev. D 49 (1994) 6810 [hep-ph/9312355] [INSPIRE].ADSGoogle Scholar
  41. [41]
    E. Braaten and A. Nieto, Effective field theory approach to high temperature thermodynamics, Phys. Rev. D 51 (1995) 6990 [hep-ph/9501375] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Laine, Exact relation of lattice and continuum parameters in three-dimensional SU(2) + Higgs theories, Nucl. Phys. B 451 (1995) 484 [hep-lat/9504001] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G.D. Moore, O(a) errors in 3D SU(N) Higgs theories, Nucl. Phys. B 523 (1998) 569 [hep-lat/9709053] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D. Bödeker, L. McLerran and A. Smilga, Really computing nonperturbative real time correlation functions, Phys. Rev D 52 (1995) 4675 [hep-th/9504123] [INSPIRE].ADSGoogle Scholar
  45. [45]
    P. Arnold, D. Son and L.G. Yaffe, The hot baryon violation rate is \(O\left( {\alpha_w^5{T^4}} \right)\), Phys. Rev. D 55 (1997) 6264 [hep-ph/9609481] [INSPIRE].ADSGoogle Scholar
  46. [46]
    E. Braaten and R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis, Nucl. Phys. B 337 (1990) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Frenkel and J. Taylor, High temperature limit of thermal QCD, Nucl. Phys. B 334 (1990) 199 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    J. Taylor and S. Wong, The effective action of hard thermal loops in QCD, Nucl. Phys. B 346 (1990) 115 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. Frenkel and J. Taylor, Hard thermal QCD, forward scattering and effective actions, Nucl. Phys. B 374 (1992) 156 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    E. Braaten and R.D. Pisarski, Simple effective Lagrangian for hard thermal loops, Phys. Rev. D 45 (1992) 1827 [INSPIRE].ADSGoogle Scholar
  51. [51]
    J.P. Blaizot and E. Iancu, Kinetic equations for long wavelength excitations of the quark-gluon plasma, Phys. Rev. Lett. 70 (1993) 3376 [hep-ph/9301236] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J.-P. Blaizot and E. Iancu, Soft collective excitations in hot gauge theories, Nucl. Phys. B 417 (1994) 608 [hep-ph/9306294] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    V.P. Nair, Hard thermal loops, gauged WZNW action and the energy of hot quark-gluon plasma, Phys. Rev. D 48 (1993) 3432 [hep-ph/9307326] [INSPIRE].ADSGoogle Scholar
  54. [54]
    G.D. Moore and K. Rummukainen, Electroweak bubble nucleation, nonperturbatively, Phys. Rev. D 63 (2001) 045002 [hep-ph/0009132] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Michela D’Onofrio
    • 1
  • Kari Rummukainen
    • 1
  • Anders Tranberg
    • 2
  1. 1.Department of Physics and Helsinki Institute of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Niels Bohr International AcademyCopenhagenDenmark

Personalised recommendations