Advertisement

Gluon fusion contribution to W + W + jet production

  • Tom Melia
  • Kirill Melnikov
  • Raoul Röntsch
  • Markus Schulze
  • Giulia Zanderighi
Article

Abstract

We describe the computation of the gg → W + W g process that contributes to the production of two W -bosons and a jet at the CERN Large Hadron Collider (LHC). While formally of next-to-next-to-leading order (NNLO) in QCD, this process can be evaluated separately from the bulk of NNLO QCD corrections because it is finite and gauge-invariant. It is also enhanced by the large gluon flux and by selection cuts employed in the Higgs boson searches in the decay channel H → W + W , as was first pointed out by Binoth et al. in the context of gg → W + W production. For cuts employed by the ATLAS collaboration, we find that the gluon fusion contribution to pp → W + W j enhances the background by about ten percent and can lead to moderate distortions of kinematic distributions which are instrumental for the ongoing Higgs boson searches at the LHC. We also release a public code to compute the NLO QCD corrections to this process, in the form of an add-on to the package MCFM.

Keywords

Higgs Physics QCD Standard Model 

References

  1. [1]
    ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \(\sqrt {s} = {7}\;TeV\) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \(\sqrt {s} = {7}\;TeV\), Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    V. Ravindran, J. Smith and W. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order Higgs + 2 jet production via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.M. Campbell, R.K. Ellis and C. Williams, Hadronic production of a Higgs boson and two jets at next-to-leading order, Phys. Rev. D 81 (2010) 074023 [arXiv:1001.4495] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Ohnemus, An order α s calculation of hadronic W W + production, Phys. Rev. D 44 (1991) 1403 [INSPIRE].ADSGoogle Scholar
  12. [12]
    S. Frixione, A next-to-leading order calculation of the cross-section for the production of W + W pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W , WZ and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order predictions for WW + 1 jet distributions at the LHC, JHEP 12 (2007) 056 [arXiv:0710.1832] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to WW + jet production at hadron colliders, Phys. Rev. Lett. 100 (2008) 062003 [arXiv:0710.1577] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to \({{{pp}} \left/ {{p\overline p \to WW + jet + X}} \right.}\) including leptonic W-boson decays, Nucl. Phys. B 826 (2010) 18 [arXiv:0908.4124] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W + W + jj production at the LHC, JHEP 12 (2010) 053 [arXiv:1007.5313] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, NLO QCD corrections for W + W pair production in association with two jets at hadron colliders, Phys. Rev. D 83 (2011) 114043 [arXiv:1104.2327] [INSPIRE].ADSGoogle Scholar
  24. [24]
    N. Greiner et al., NLO QCD corrections to the production of W + W plus two jets at the LHC, Phys. Lett. B 713 (2012) 277 [arXiv:1202.6004] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C. Kao and D.A. Dicus, Production of W + W from gluon fusion, Phys. Rev. D 43 (1991) 1555 [INSPIRE].ADSGoogle Scholar
  26. [26]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced WW background to Higgs boson searches at the LHC, JHEP 03 (2005) 065 [hep-ph/0503094] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R.K. Ellis, W. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R.K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, arXiv:1105.4319 [INSPIRE].
  32. [32]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    J.A. Maestre et al., The SM and NLO multileg and SM MC working groups: summary report, arXiv:1203.6803 [INSPIRE].
  34. [34]
    V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G. Bevilacqua et al., HELAC-NLO, arXiv:1110.1499 [INSPIRE].
  36. [36]
    G. Cullen et al., Automated one-loop calculations with GoSam, arXiv:1201.2782 [INSPIRE].
  37. [37]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    F.A. Berends, W. Giele and H. Kuijf, On six jet production at hadron colliders, Phys. Lett. B 232 (1989) 266 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the HW Wℓνℓν decay mode with 4.7 fb −1 of ATLAS data at \(\sqrt {s} = {7}\;TeV\), ATLAS-CONF-2012-12 (2012).
  43. [43]
    J.M. Campbell, R.K. Ellis and C. Williams, Gluon-gluon contributions to W + W production and Higgs interference effects, JHEP 10 (2011) 005 [arXiv:1107.5569] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Tom Melia
    • 1
  • Kirill Melnikov
    • 2
  • Raoul Röntsch
    • 1
  • Markus Schulze
    • 3
  • Giulia Zanderighi
    • 1
  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.
  2. 2.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreU.S.A.
  3. 3.High Energy Physics DivisionArgonne National LaboratoryArgonneU.S.A.

Personalised recommendations