Degenerate rotating black holes, chiral CFTs and Fermi surfaces I — Analytic results for quasinormal modes

  • Micha Berkooz
  • Anna Frishman
  • Amir Zait


In this work we discuss charged rotating black holes in AdS 5 × S 5 that degenerate to extremal black holes with zero entropy. These black holes have scaling properties between charge and angular momentum similar to those of Fermi surface operators in a subsector of \( \mathcal{N} = 4 \) SYM. We add a massless uncharged scalar to the five dimensional supergravity theory, such that it still forms a consistent truncation of the type IIB ten dimensional supergravity and analyze its quasinormal modes. Separating the equation of motion to a radial and angular part, we proceed to solve the radial equation using a matched asymptotic expansion method applied to Heun’s equation with two nearby singularities. We use the continued fraction method for the angular Heun equation and obtain numerical results for the quasinormal modes. In the case of the near-supersymmetric black hole we present some analytic results for the decay rates of the scalar perturbations. The spectrum of quasinormal modes obtained is similar to that of a chiral 1 + 1 CFT, which is consistent with the conjectured field-theoretic dual. In addition, some of the modes can be found analytically.


AdS-CFT Correspondence Black Holes Spacetime Singularities 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    J. Mei and C. Pope, New rotating non-extremal black holes in D = 5 maximal gauged supergravity, Phys. Lett. B 658 (2007) 64 [arXiv:0709.0559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    M. Cvetič, H. Lü and C. Pope, Charged rotating black holes in five dimensional U(1)3 gauged N = 2 supergravity, Phys. Rev. D 70 (2004) 081502 [hep-th/0407058][INSPIRE].ADSGoogle Scholar
  4. [4]
    Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Z. Chong, M. Cvetič, H. Lü and C. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].ADSGoogle Scholar
  6. [6]
    Z. Chong, M. Cvetič, H. Lü and C. Pope, Non-extremal rotating black holes in five-dimensional gauged supergravity, Phys. Lett. B 644 (2007) 192 [hep-th/0606213] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS 5 black holes, JHEP 04 (2006) 036 [hep-th/0601156] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    A. Adams, J. Polchinski and E. Silverstein, Dont panic! Closed string tachyons in ALE space-times, JHEP 10 (2001) 029 [hep-th/0108075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    V. Cardoso and O.J. Dias, Small Kerr-Anti-de Sitter black holes are unstable, Phys. Rev. D 70 (2004) 084011 [hep-th/0405006] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    N. Uchikata, S. Yoshida and T. Futamase, Scalar perturbations of Kerr-AdS black holes, Phys. Rev. D 80 (2009) 084020 [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M. Berkooz, D. Reichmann and J. Simon, A Fermi surface model for large supersymmetric AdS 5 black holes, JHEP 01 (2007) 048 [hep-th/0604023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M. Berkooz and D. Reichmann, Weakly Renormalized Near 1/16 SUSY Fermi Liquid Operators in N = 4 SYM, JHEP 10 (2008) 084 [arXiv:0807.0559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    N. Beisert, The complete one loop dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B 676 (2004) 3 [hep-th/0307015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Cvetič, G. Gibbons, H. Lü and C. Pope, Rotating black holes in gauged supergravities: thermodynamics, supersymmetric limits, topological solitons and time machines, hep-th/0504080 [INSPIRE].
  16. [16]
    M. Cvetič, H. Lü, C. Pope, A. Sadrzadeh and T.A. Tran, Consistent SO(6) reduction of type IIB supergravity on S 5, Nucl. Phys. B 586 (2000) 275 [hep-th/0003103] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S.-J. Rey, String theory on thin semiconductors: Holographic realization of Fermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  19. [19]
    M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].ADSGoogle Scholar
  21. [21]
    T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemissionexperimentson holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Strange metal transport realized by gauge/gravity duality, Science 329 (2010) 1043 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    O. DeWolfe, S.S. Gubser and C. Rosen, Fermi surfaces in maximal gauged supergravity, Phys. Rev. Lett. 108 (2012) 251601 [arXiv:1112.3036] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Holographic non-Fermi liquid fixed points, arXiv:1101.0597 [INSPIRE].
  28. [28]
    D.D. Chow, M. Cvetič, H. Lü and C. Pope, Extremal black hole/CFT correspondence in (gauged) supergravities, Phys. Rev. D 79 (2009) 084018 [arXiv:0812.2918] [INSPIRE].ADSGoogle Scholar
  29. [29]
    O.J. Dias, R. Emparan and A. Maccarrone, Microscopic theory of black hole superradiance, Phys. Rev. D 77 (2008) 064018 [arXiv:0712.0791] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    R. Fareghbal, C. Gowdigere, A. Mosaffa and M. Sheikh-Jabbari, Nearing extremal intersecting giants and new decoupled sectors in N = 4 SYM, JHEP 08 (2008) 070 [arXiv:0801.4457] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    M. Sheikh-Jabbari and H. Yavartanoo, EVH black holes, AdS 3 throats and EVH/CFT proposal, JHEP 10 (2011) 013 [arXiv:1107.5705] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    J. de Boer, M. Johnstone, M. Sheikh-Jabbari and J. Simon, Emergent IR dual 2D CFTs in charged AdS 5 black holes, Phys. Rev. D 85 (2012) 084039 [arXiv:1112.4664] [INSPIRE].ADSGoogle Scholar
  33. [33]
    I. Garcia-Etxebarria, F. Saad and A.M. Uranga, Quiver gauge theories at resolved and deformed singularities using dimers, JHEP 06 (2006) 055 [hep-th/0603108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    N. Beisert and B.I. Zwiebel, On symmetry enhancement in the PSU(1, 1|2) sector of N = 4 SYM, JHEP 10 (2007) 031 [arXiv:0707.1031] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    B.I. Zwiebel, Iterative structure of the N = 4 SYM spin chain, JHEP 07 (2008) 114 [arXiv:0806.1786] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    P. Davis, H.K. Kunduri and J. Lucietti, Special symmetries of the charged Kerr-AdS black hole of D = 5 minimal gauged supergravity, Phys. Lett. B 628 (2005) 275 [hep-th/0508169] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    S.-Q. Wu, Separability of massive field equations for spin-0 and spin-1/2 charged particles in the general non-extremal rotating charged black holes in minimal five-dimensional gauged supergravity, Phys. Rev. D 80 (2009) 084009 [arXiv:0906.2049] [INSPIRE].ADSGoogle Scholar
  39. [39]
    T. Birkandan and M. Cvetič, Conformal invariance and near-extreme rotating AdS black holes, Phys. Rev. D 84 (2011) 044018 [arXiv:1106.4329] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A.N. Aliev and O. Delice, Superradiant instability of five-dimensional rotating charged AdS black holes, Phys. Rev. D 79 (2009) 024013 [arXiv:0808.0280] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    M. Berkooz, A. Frishman and A. Zait, Stability of rapidly rotating charged black holes in AdS 5 × S 5, in progress.Google Scholar
  43. [43]
    E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    H. Kim, L. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2 D = 10 supergravity on S 5, Phys. Rev. D 32 (1985) 389 [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Günaydin and N. Marcus, The spectrum of the S 5 compactification of the chiral N = 2, D = 10 supergravity and the unitary supermultiplets of U(2,2/4), Class. Quant. Grav. 2 (1985) L11 [INSPIRE].MATHCrossRefGoogle Scholar
  46. [46]
    M. Günaydin, L. Romans and N. Warner, Compact and noncompact gauged supergravity theories in five-dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    W. Lay and S.Y. Slavyanov, Heuns equation with nearby singularities, Proc. Math. Phys. Eng. Sci. 455 (1999) 4347.MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    G. Compère, The Kerr/CFT correspondence and its extensions: a comprehensive review, arXiv:1203.3561 [INSPIRE].
  49. [49]
    I. Bredberg, T. Hartman, W. Song and A. Strominger, Black hole superradiance from Kerr/CFT, JHEP 04 (2010) 019 [arXiv:0907.3477] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    S. Hod, Slow relaxation of rapidly rotating black holes, Phys. Rev. D 78 (2008) 084035 [arXiv:0811.3806] [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    S. Hod, Quasinormal resonances of near-extremal Kerr-Newman black holes, Phys. Lett. B 666 (2008) 483 [arXiv:0810.5419] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    S. Hod, Black-hole quasinormal resonances: wave analysis versus a geometric-optics approximation, Phys. Rev. D 80 (2009) 064004 [arXiv:0909.0314] [INSPIRE].ADSGoogle Scholar
  53. [53]
    S. Hod, Relaxation dynamics of charged gravitational collapse, Phys. Lett. A 374 (2010) 2901 [arXiv:1006.4439] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Hod, Quasinormal resonances of a massive scalar field in a near-extremal Kerr black hole spacetime, Phys. Rev. D 84 (2011) 044046 [arXiv:1109.4080] [INSPIRE].ADSGoogle Scholar
  55. [55]
    E.W. Leaver, An analytic representation for the quasi-normal modes of Kerr black holes, Proc. Roy. Soc. London A 402 (1985) 285.MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    E.W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D 34 (1986) 384 [INSPIRE].MathSciNetADSGoogle Scholar
  57. [57]
    A.O. Starinets, Quasinormal modes of near extremal black branes, Phys. Rev. D 66 (2002) 124013 [hep-th/0207133] [INSPIRE].MathSciNetADSGoogle Scholar
  58. [58]
    W. Gautschi, Computational aspects of three-term recurrence relations, SIAM Rev. 9 (1967) 24.MathSciNetADSMATHCrossRefGoogle Scholar
  59. [59]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].MathSciNetADSGoogle Scholar
  60. [60]
    H. Lü, J. Mei and C. Pope, Kerr/CFT correspondence in diverse dimensions, JHEP 04 (2009) 054 [arXiv:0811.2225] [INSPIRE].CrossRefGoogle Scholar
  61. [61]
    H. Lü, J.-w. Mei, C. Pope and J.F. Vázquez-Poritz, Extremal static AdS black hole/CFT correspondence in gauged supergravities, Phys. Lett. B 673 (2009) 77 [arXiv:0901.1677] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].MathSciNetADSGoogle Scholar
  63. [63]
    C. Krishnan, Hidden conformal symmetries of five-dimensional black holes, JHEP 07 (2010) 039 [arXiv:1004.3537] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Particle Physics and AstrophysicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations