Advertisement

The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

  • Philip C. Argyres
  • Mithat Ünsal
Open Access
Article

Abstract

We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are magnetic bions which carry net magnetic charge and induce a mass gap for gauge fluctuations. Another type are neutral bions which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics — which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription — to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion-anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Écalle’s resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.

Keywords

Solitons Monopoles and Instantons Nonperturbative Effects Renormalization Regularization and Renormalons Field Theories in Lower Dimensions 

References

  1. [1]
    P. Kovtun, M. Ünsal and L.G. Yaffe, Volume independence in large-N c QCD-like gauge theories, JHEP 06 (2007) 019 [hep-th/0702021] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Ünsal, Abelian duality, confinement and chiral symmetry breaking in QCD(adj), Phys. Rev. Lett. 100 (2008) 032005 [arXiv:0708.1772] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Ünsal, Magnetic bion condensation: A New mechanism of confinement and mass gap in four dimensions, Phys. Rev. D 80 (2009) 065001 [arXiv:0709.3269] [INSPIRE].ADSGoogle Scholar
  4. [4]
    E. Witten, Constraints on supersymmetry breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    B. Bringoltz and S.R. Sharpe, Non-perturbative volume-reduction of large-N QCD with adjoint fermions, Phys. Rev. D 80 (2009) 065031 [arXiv:0906.3538] [INSPIRE].ADSGoogle Scholar
  6. [6]
    T. Azeyanagi, M. Hanada, M. Ünsal and R. Yacoby, Large-N reduction in QCD-like theories with massive adjoint fermions, Phys. Rev. D 82 (2010) 125013 [arXiv:1006.0717] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Hietanen and R. Narayanan, The large-N limit of four dimensional Yang-Mills field coupled to adjoint fermions on a single site lattice, JHEP 01 (2010) 079 [arXiv:0911.2449] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Eguchi and H. Kawai, Reduction of dynamical degrees of freedom in the large-N gauge theory, Phys. Rev. Lett. 48 (1982) 1063 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Armoni, M. Shifman and G. Veneziano, Exact results in nonsupersymmetric large-N orientifold field theories, Nucl. Phys. B 667 (2003) 170 [hep-th/0302163] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. Ünsal and L.G. Yaffe, (In)validity of large-N orientifold equivalence, Phys. Rev. D 74 (2006) 105019 [hep-th/0608180] [INSPIRE].ADSGoogle Scholar
  11. [11]
    E. Poppitz and M. Ünsal, Seiberg-Witten andPolyakov-likemagnetic bion confinements are continuously connected, JHEP 07 (2011) 082 [arXiv:1105.3969] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE].
  13. [13]
    S.H. Katz and C. Vafa, Geometric engineering of N = 1 quantum field theories, Nucl. Phys. B 497 (1997) 196 [hep-th/9611090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    N.M. Davies, T.J. Hollowood and V.V. Khoze, Monopoles, affine algebras and the gluino condensate, J. Math. Phys. 44 (2003) 3640 [hep-th/0006011] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  15. [15]
    D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A. Armoni, M. Shifman and M. Ünsal, Planar limit of orientifold field theories and emergent center symmetry, Phys. Rev. D 77 (2008) 045012 [arXiv:0712.0672] [INSPIRE].ADSGoogle Scholar
  17. [17]
    Y. Hosotani, Dynamics of nonintegrable phases and gauge symmetry breaking, Annals Phys. 190 (1989) 233 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    M.C. Ogilvie, P.N. Meisinger and J.C. Myers, Exploring partially confined phases, PoS(LATTICE 2007)213 [arXiv:0710.0649] [INSPIRE].
  19. [19]
    A. Armoni, D. Dorigoni and G. Veneziano, k-string tension from Eguchi-Kawai reduction, JHEP 10 (2011) 086 [arXiv:1108.6196] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    M.M. Anber and E. Poppitz, Microscopic structure of magnetic bions, JHEP 06 (2011) 136 [arXiv:1105.0940] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T.M. Nye and M.A. Singer, An L 2 index theorem for Dirac operators on S 1 × R 3, J. Funct. Anal. (2000) [math/0009144] [INSPIRE].
  22. [22]
    E. Poppitz and M. Ünsal, Index theorem for topological excitations on R 3 × S 1 and Chern-Simons theory, JHEP 03 (2009) 027 [arXiv:0812.2085] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    F. Bruckmann, D. Nogradi and P. van Baal, Constituent monopoles through the eyes of fermion zero modes, Nucl. Phys. B 666 (2003) 197 [hep-th/0305063] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Garcia Perez, A. Gonzalez-Arroyo and A. Sastre, Adjoint fermion zero-modes for SU(N ) calorons, JHEP 06 (2009) 065 [arXiv:0905.0645] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    A. M. Polyakov, Quark confinement and topology of gauge groups, Nucl. Phys. B 120 (1977) 429 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    E.B. Bogomolny, Calculation of instantonAnti-instanton contributions in quantum mechanics, Phys. Lett. B 91 (1980) 431 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Zinn-Justin, Multi-instanton contributions in quantum mechanics, Nucl. Phys. B 192 (1981) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    I. Balitsky and A. Yung, Instanton molecular vacuum in N = 1 supersymmetric quantum mechanics, Nucl. Phys. B 274 (1986) 475 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    I. Balitsky and A. Yung, Collective-coordinate method for quasizero modes, Phys. Lett. B 168 (1986) 113 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Yung, Instanton vacuum in supersymmetric QCD, Nucl. Phys. B 297 (1988) 47 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    L. Lipatov, Divergence of the perturbation theory series and the quasiclassical theory, Sov. Phys. JETP 45 (1977) 216 [Zh. Eksp. Teor. Fiz. 72 (1977) 411] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    G. ’t Hooft, Can we make sense out of quantum chromodynamics?, Subnucl. Ser. 15 (1979) 943.Google Scholar
  33. [33]
    P. Argyres and M. Ünsal, A semiclassical realization of infrared renormalons, arXiv:1204.1661 [INSPIRE].
  34. [34]
    J. Écalle, Les Fonctions resurgentes, Publ. Math. Orsay, France (1981).Google Scholar
  35. [35]
    B.Y. Sternin and V.E. Shatalov, Borel-Laplace transform and asymptotic theory: introduction to resurgent analysis, 1st edition, CRC, U.S.A. (1996).MATHGoogle Scholar
  36. [36]
    O. Costin, Asymptotics and Borel summability, 1st edition, Chapman & Hall/CRC, U.S.A. (2009).MATHGoogle Scholar
  37. [37]
    D. Sauzin, Resurgent functions and splitting problems, arXiv:0706.0137.
  38. [38]
    M. Mariño, Nonperturbative effects and nonperturbative definitions in matrix models and topological strings, JHEP 12 (2008) 114 [arXiv:0805.3033] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    I. Aniceto, R. Schiappa and M. Vonk, The resurgence of instantons in string theory, arXiv:1106.5922 [INSPIRE].
  40. [40]
    G. Dunne and M. Ünsal, Resurgence in two-dimensional quantum field theory (I): CP(N − 1),toappear.Google Scholar
  41. [41]
    M.V. Berry and C.J. Howls, Hyperasymptotics for integrals with saddles, Proc. Roy. Soc. Lond. A 434 (1991) 657.MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    P. Goddard, J. Nuyts and D.I. Olive, Gauge theories and magnetic charge, Nucl. Phys. B 125 (1977) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    A. Kapustin, Wilson-t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    P.A. Dirac, Quantized singularities in the electromagnetic field, Proc. Roy. Soc. Lond. A 133 (1931) 60 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    I. Affleck, J.A. Harvey and E. Witten, Instantons and (super)symmetry breaking in (2 + 1)-dimensions, Nucl. Phys. B 206 (1982) 413 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    E. Witten, Dynamics of quantum field theory, in Quantum fields and strings: A course for mathematicians, P. Deligne et al. eds., American Mathematical Society, U.S.A. (1999).Google Scholar
  47. [47]
    G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    C. Korthals-Altes and A. Kovner, Magnetic Z(N ) symmetry in hot QCD and the spatial Wilson loop, Phys. Rev. D 62 (2000) 096008 [hep-ph/0004052] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J.A. Harvey, Magnetic monopoles, duality and supersymmetry, hep-th/9603086 [INSPIRE].
  50. [50]
    K.-M. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys. Rev. D 56 (1997) 3711 [hep-th/9702107] [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    T.C. Kraan and P. van Baal, Monopole constituents inside SU(N ) calorons, Phys. Lett. B 435 (1998) 389 [hep-th/9806034] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Vandoren and P. van Nieuwenhuizen, Lectures on instantons, arXiv:0802.1862 [INSPIRE].
  53. [53]
    G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. D 18 (1978) 2199] [INSPIRE].ADSGoogle Scholar
  54. [54]
    G. ’t Hooft, How instantons solve the U(1) problem, Phys. Rept. 142 (1986) 357 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    S. Coleman, Aspects of symmetry, Cambridge University Press, Cambridge U.K. (1988).Google Scholar
  56. [56]
    M. Beneke, Renormalons, Phys. Rept. 317 (1999) 1 [hep-ph/9807443] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Weinberg, The quantum theory of fields, Cambridge University Press, Cambridge U.K. (2005).MATHGoogle Scholar
  58. [58]
    E. Bogomolny and V. Fateev, Large orders calculations in the gauge theories, Phys. Lett. B 71 (1977) 93 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    M.V. Berry and C.J. Howls, Hyperasymptotics, Proc. Roy. Soc. Lond. A 430 (1990) 653.MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    J.P. Boyd, The devils invention: asymptotic, superasymptotic and hyperasymptotic series, Acta Appl. Math. 56 (1999) 1.MathSciNetMATHCrossRefGoogle Scholar
  61. [61]
    R.B. Dingle, Asymptotic expansions: their derivation and interpretation, Academic Press, U.S.A. (1973).MATHGoogle Scholar
  62. [62]
    E. Poppitz and M. Ünsal, Conformality or confinement: (IR)relevance of topological excitations, JHEP 09 (2009) 050 [arXiv:0906.5156] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Pasquetti and R. Schiappa, Borel and stokes nonperturbative phenomena in topological string theory and c = 1 matrix models, Annales Henri Poincaré 11 (2010) 351 [arXiv:0907.4082] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  64. [64]
    J. Zinn-Justin, Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys. 113 (2002) 1 [INSPIRE].Google Scholar
  65. [65]
    C.M. Bender and T.T. Wu, Anharmonic oscillator, Phys. Rev. 184 (1969) 1231 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    C.M. Bender and T. Wu, Anharmonic oscillator. 2: a study of perturbation theory in large order, Phys. Rev. D 7 (1973) 1620 [INSPIRE].MathSciNetADSGoogle Scholar
  67. [67]
    M. Mariño, R. Schiappa and M. Weiss, Nonperturbative effects and the large-order behavior of matrix models and topological strings, Commun. Num. Theor. Phys. 2 (2008) 349 [arXiv:0711.1954] [INSPIRE].MATHCrossRefGoogle Scholar
  68. [68]
    J.G. Russo, A note on perturbation series in supersymmetric gauge theories, JHEP 06 (2012) 038 [arXiv:1203.5061] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    B. Candelpergher, J.C. Nosmas and F. Pham, Premiers pas en calcul étranger, Ann. Inst. Fourier 43 (1993) 201.MathSciNetMATHCrossRefGoogle Scholar
  70. [70]
    H. Samelson, Notes on Lie algebras, Springer, U.S.A. (1990).MATHCrossRefGoogle Scholar
  71. [71]
    J. Fuchs, Affine Lie algebras and quantum groups, Cambridge University Press, Cambridge U.K. (1992).MATHGoogle Scholar
  72. [72]
    J.E. Humphreys, Introduction to Lie algebras and representation theory, Springer, U.S.A. (1972).MATHCrossRefGoogle Scholar
  73. [73]
    C.W. Bernard, N.H. Christ, A.H. Guth and E.J. Weinberg, Instanton parameters for arbitrary gauge groups, Phys. Rev. D 16 (1977) 2967 [INSPIRE].MathSciNetADSGoogle Scholar
  74. [74]
    J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, Cambridge U.K. (1990).MATHCrossRefGoogle Scholar
  75. [75]
    N. Bourbaki, Lie groups and Lie algebras, Springer, U.S.A. (2002).MATHCrossRefGoogle Scholar
  76. [76]
    M.R. Bremmer, R.V. Moody and J. Patera, Tables of dominant weight multiplicities for representations of simple Lie algebras, Marcel Dekker, New York U.S.A. (1985).Google Scholar
  77. [77]
    J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups, 2nd edition, Springer, U.S.A. (1993).MATHCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.Physics Dept.Univ. of CincinnatiCincinnatiU.S.A.
  2. 2.Department of Physics and AstronomySFSUSan FranciscoU.S.A.
  3. 3.SLAC and Department of PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations