Thermal quenches in \( \mathcal{N} \) = 2* plasmas

  • Alex Buchel
  • Luis Lehner
  • Robert C. Myers


We exploit gauge/gravity duality to study ‘thermal quenches’ in a plasma of the strongly coupled \( \mathcal{N} \) = 2* gauge theory. Specifically, we consider the response of an initial thermal equilibrium state of the theory under variations of the bosonic or fermionic mass, to leading order in m/T ≪ 1. When the masses are made to vary in time, novel new counterterms must be introduced to renormalize the boundary theory. We consider transitions the conformal super-Yang-Mills theory to the mass deformed gauge theory and also the reverse transitions. By construction, these transitions are controlled by a characteristic time scale \( \mathcal{T} \) and we show how the response of the system depends on the ratio of this time scale to the thermal time scale 1/T . The response shows interesting scaling behaviour both in the limit of fast quenches with T \( \mathcal{T} \) ≪ 1 and slow quenches with T \( \mathcal{T} \) ≫ 1. In the limit that T \( \mathcal{T} \) → ∞, we observe the expected adiabatic response. For fast quenches, the relaxation to the final equilibrium is controlled by the lowest quasinormal mode of the bulk scalar dual to the quenched operator. For slow quenches, the system relaxes with a (nearly) adiabatic response that is governed entirely by the late time profile of the mass. We describe new renormalization scheme ambiguities in defining gauge invariant observables for the theory with time dependant couplings.


Gauge-gravity correspondence AdS-CFT Correspondence Holography and quark-gluon plasmas Quantum Dissipative Systems 


  1. [1]
    L.D. Landau and E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Course of Theoretical Physics volume 3, Pergamon Press, Oxford (1989).Google Scholar
  2. [2]
    C. Itzykson and J.B. Zuber, Quantum field theory, McGraw-Hill International Book Co. (1980).Google Scholar
  3. [3]
    S. Mondal, D. Sen and K. Sengupta, Non-equilibrium dynamics of quantum systems: order parameter evolution, defect generation, and qubit transfer, arXiv:0908.2922.
  4. [4]
    J. Dziarmaga, Dynamics of a quantum phase transition and relaxation to a steady state, Advances in Physics 59 (2010) 1063 [arXiv:0912.4034].ADSCrossRefGoogle Scholar
  5. [5]
    A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83 (2011) 863 [arXiv:1007.5331] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Lamacraft and J. Moore, Potential insights into non-equilibrium behavior from atomic physics, arXiv:1106.3567.
  7. [7]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].MathSciNetGoogle Scholar
  8. [8]
    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P. Calabrese and J. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech. 0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].MathSciNetGoogle Scholar
  10. [10]
    S. Sotiriadis and J. Cardy, Quantum quench in interacting field theory: A Self-consistent approximation, Phys. Rev. B 81 (2010) 134305 [arXiv:1002.0167] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Sotiriadis and J. Cardy, Inhomogeneous quantum quenches, J. Stat. Mech. 11 (2008) 3 [arXiv:0808.0116].Google Scholar
  12. [12]
    S. Sotiriadis, P. Calabrese and J. Cardy, Quantum Quench from a Thermal Initial State, EPL 87 (2009) 20002 [arXiv:0903.0895].ADSCrossRefGoogle Scholar
  13. [13]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  14. [14]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S.R. Das, T. Nishioka and T. Takayanagi, Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    P. Basu and S.R. Das, Quantum Quench across a Holographic Critical Point, JHEP 01 (2012) 103 [arXiv:1109.3909] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.R. Das, Holographic Quantum Quench, J. Phys. Conf. Ser. 343 (2012) 012027 [arXiv:1111.7275] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Spherically collapsing matter in AdS, holography and shellons, Nucl. Phys. B 563 (1999) 279 [hep-th/9905227] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP 02 (2000) 039 [hep-th/9912209] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    S.B. Giddings and S.F. Ross, D3-brane shells to black branes on the Coulomb branch, Phys. Rev. D 61 (2000) 024036 [hep-th/9907204] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    S.B. Giddings and A. Nudelman, Gravitational collapse and its boundary description in AdS, JHEP 02 (2002) 003 [hep-th/0112099] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    S. Bhattacharyya and S. Minwalla, Weak Field Black Hole Formation in Asymptotically AdS Spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal and Electromagnetic Quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    H. Ebrahim and M. Headrick, Instantaneous Thermalization in Holographic Plasmas, arXiv:1010.5443 [INSPIRE].
  26. [26]
    V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    V. Balasubramanian et al., Holographic Thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].ADSGoogle Scholar
  28. [28]
    V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Aparicio and E. Lopez, Evolution of Two-Point Functions from Holography, JHEP 12 (2011) 082 [arXiv:1109.3571] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP 01 (2012) 102 [arXiv:1110.1607] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].ADSGoogle Scholar
  32. [32]
    D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP 07 (2012) 096 [arXiv:1205.1548] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Caceres and A. Kundu, Holographic Thermalization with Chemical Potential, arXiv:1205.2354 [INSPIRE].
  34. [34]
    R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    R.A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98 (2007) 022302 [hep-th/0610144] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Lin and E. Shuryak, Toward the AdS/CFT Gravity Dual for High Energy Collisions. 3. Gravitationally Collapsing Shell and Quasiequilibrium, Phys. Rev. D 78 (2008) 125018 [arXiv:0808.0910] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].ADSGoogle Scholar
  39. [39]
    D. Garfinkle and L.A. Pando Zayas, Rapid Thermalization in Field Theory from Gravitational Collapse, Phys. Rev. D 84 (2011) 066006 [arXiv:1106.2339] [INSPIRE].ADSGoogle Scholar
  40. [40]
    D. Garfinkle, L.A. Pando Zayas and D. Reichmann, On Field Theory Thermalization from Gravitational Collapse, JHEP 02 (2012) 119 [arXiv:1110.5823] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    H. Bantilan, F. Pretorius and S.S. Gubser, Simulation of Asymptotically AdS 5 Spacetimes with a Generalized Harmonic Evolution Scheme, Phys. Rev. D 85 (2012) 084038 [arXiv:1201.2132] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong Coupling Isotropization of Non-Abelian Plasmas Simplified, Phys. Rev. Lett. 108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M.P. Heller, R.A. Janik and P. Witaszczyk, A numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalizationan ADM formulation, Phys. Rev. D 85 (2012) 126002 [arXiv:1203.0755] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J. Bhaseen, B. Simons, J. Sonner, J. Gauntlett and T. Wiseman, Quenches in Holographic Superconductors, in preparation
  45. [45]
    K. Pilch and N.P. Warner, N = 2 supersymmetric RG flows and the IIB dilaton, Nucl. Phys. B 594 (2001) 209 [hep-th/0004063] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    A. Khavaev, K. Pilch and N.P. Warner, New vacua of gauged N = 8 supergravity in five-dimensions, Phys. Lett. B 487 (2000) 14 [hep-th/9812035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    A. Buchel, A.W. Peet and J. Polchinski, Gauge dual and noncommutative extension of an N =2 supergravity solution, Phys. Rev. D 63(2001) 044009 [hep-th/0008076] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    N.J. Evans, C.V. Johnson and M. Petrini, The Enhancon and N = 2 gauge theory: Gravity RG flows, JHEP 10 (2000) 022 [hep-th/0008081] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    A. Buchel and J.T. Liu, Thermodynamics of the N = 2* flow, JHEP 11 (2003) 031 [hep-th/0305064] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    A. Buchel, N = 2* hydrodynamics, Nucl. Phys. B 708 (2005) 451 [hep-th/0406200] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    A. Buchel, S. Deakin, P. Kerner and J.T. Liu, Thermodynamics of the N = 2* strongly coupled plasma, Nucl. Phys. B 784 (2007) 72 [hep-th/0701142] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    C. Hoyos, S. Paik and L.G. Yaffe, Screening in strongly coupled N = 2* supersymmetric Yang-Mills plasma, JHEP 10 (2011) 062 [arXiv:1108.2053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    N.D. Birrell and P.C.W. Davies, Quantum Fields In Curved Space, Cambridge University Press, Cambridge, U.K. (1982) [INSPIRE].MATHCrossRefGoogle Scholar
  54. [54]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, arXiv:1107.5780 [INSPIRE].
  56. [56]
    A. Buchel, L. Lehner, R.C. Myers and A. van Niekerk, work in progress.Google Scholar
  57. [57]
    C. Fefferman and C. R. Graham, Conformal Invariants, in Elie Cartan et les Mathématiques daujourd hui, Astérisque (1985), pg. 95.Google Scholar
  58. [58]
    C. Fefferman and C.R. Graham, The ambient metric, arXiv:0710.0919.
  59. [59]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    O. Aharony, A. Buchel and A. Yarom, Holographic renormalization of cascading gauge theories, Phys. Rev. D 72 (2005) 066003 [hep-th/0506002] [INSPIRE].MathSciNetADSGoogle Scholar
  62. [62]
    A. Petkou and K. Skenderis, A Nonrenormalization theorem for conformal anomalies, Nucl. Phys. B 561 (1999) 100 [hep-th/9906030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    C.R. Graham and M. Zworski, Scattering Matrix in Conformal Geometry, math.0109089/.
  64. [64]
    J. Wess, The Conformal Invariance in Quantum Field Theory, Nuovo Cimento 18 (1960) 1086.MathSciNetMATHCrossRefGoogle Scholar
  65. [65]
    S.R. Coleman and R. Jackiw, Why dilatation generators do not generate dilatations?, Annals Phys. 67 (1971) 552 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  68. [68]
    E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    A. Núñez and A.O. Starinets, AdS/CFT correspondence, quasinormal modes and thermal correlators in N = 4 SYM, Phys. Rev. D 67 (2003) 124013 [hep-th/0302026] [INSPIRE].ADSGoogle Scholar
  70. [70]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].MathSciNetADSGoogle Scholar
  72. [72]
    R.M. Wald, Axiomatic Renormalization of the Stress Tensor of a Conformally Invariant Field in Conformally Flat Space-Times, Annals Phys. 110 (1978) 472 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  73. [73]
    R.M. Wald, Trace Anomaly of a Conformally Invariant Quantum Field in Curved Space-Time, Phys. Rev. D 17 (1978) 1477 [INSPIRE].MathSciNetADSGoogle Scholar
  74. [74]
    I. Booth, M.P. Heller and M. Spalinski, Black brane entropy and hydrodynamics: The Boost-invariant case, Phys. Rev. D 80 (2009) 126013 [arXiv:0910.0748] [INSPIRE].ADSGoogle Scholar
  75. [75]
    I. Booth, M.P. Heller and M. Spalinski, Black Brane Entropy and Hydrodynamics, Phys. Rev. D 83 (2011) 061901 [arXiv:1010.6301] [INSPIRE].ADSGoogle Scholar
  76. [76]
    I. Booth, M.P. Heller, G. Plewa and M. Spalinski, On the apparent horizon in fluid-gravity duality, Phys. Rev. D 83 (2011) 106005 [arXiv:1102.2885] [INSPIRE].ADSGoogle Scholar
  77. [77]
    R. Isaacson, J. Welling and J. Winicour, Null cone computation of gravitational radiation, J. Math. Phys. 24 (1983) 1824 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    L. Lehner, A Dissipative algorithm for wave-like equations in the characteristic formulation, gr-qc/9811095 [INSPIRE].
  79. [79]
    F. Pretorius and L. Lehner, Adaptive mesh refinement for characteristic codes, J. Comput. Phys. 198 (2004) 10 [gr-qc/0302003] [INSPIRE].ADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Department of Applied MathematicsUniversity of Western OntarioLondonCanada
  3. 3.Department of PhysicsUniversity of GuelphGuelphCanada

Personalised recommendations