Advertisement

Magnetic catalysis with massive dynamical flavours

  • Johanna Erdmenger
  • Veselin Filev
  • Dimitrios Zoakos
Article

Abstract

Within gauge/gravity duality, we construct a backreacted supergravity background dual to SU(N c ) \( \mathcal{N} = 4 \) SYM coupled to N f massive fundamental flavours in the presence of an external magnetic field. Our solution is perturbative in a parameter that counts the number of the internal flavour loops. The background has a hollow cavity in the bulk of the geometry, where it is similar to the supergravity dual of a non-commutative SYM. The radius of this cavity is related to the dynamically generated mass of the fundamental fields. We apply our construction to study the effect of magnetic catalysis and develop an appropriate renormalization scheme to compute the free energy and the fundamental condensate of the dual gauge theory as a function of the bare mass. While at leading order in the expansion of the perturbative parameter, the free energy and the fundamental condensate agree with the results obtained in the quenched approximation, at next order we show that the effect of magnetic catalysis is enhanced and the contribution to the condensate of the theory from internal fundamental loops runs logarithmically with the finite cutoff Λ UV .

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    V. Gusynin, V. Miransky and I. Shovkovy, Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2 + 1)-dimensions, Phys. Rev. Lett. 73 (1994) 3499 [Erratum ibid. 76 (1996) 1005] [hep-ph/9405262] [INSPIRE].
  3. [3]
    V. Gusynin, V. Miransky and I. Shovkovy, Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3 + 1)-dimensions, Phys. Lett. B 349 (1995) 477 [hep-ph/9412257] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D.K. Hong, Y. Kim and S.-J. Sin, RG analysis of magnetic catalysis in dynamical symmetry breaking, Phys. Rev. D 54 (1996) 7879 [hep-th/9603157] [INSPIRE].ADSGoogle Scholar
  5. [5]
    K. Klimenko, Three-dimensional Gross-Neveu model in an external magnetic field, Theor. Math. Phys. 89 (1992) 1161 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  6. [6]
    K. Klimenko, Three-dimensional Gross-Neveu model at nonzero temperature and in an external magnetic field, Z. Phys. C 54 (1992) 323 [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    K. Klimenko, Three-dimensional Gross-Neveu model at nonzero temperature and in an external magnetic field, Theor. Math. Phys. 90 (1992) 1 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  8. [8]
    V.G. Filev, C.V. Johnson, R. Rashkov and K. Viswanathan, Flavoured large-N gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    V.G. Filev, Criticality, scaling and chiral symmetry breaking in external magnetic field, JHEP 04 (2008) 088 [arXiv:0706.3811] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    V.G. Filev and R.C. Raskov, Magnetic Catalysis of Chiral Symmetry Breaking. A Holographic Prospective, Adv. High Energy Phys. 2010 (2010) 473206 [arXiv:1010.0444] [INSPIRE].Google Scholar
  11. [11]
    J. Erdmenger, R. Meyer and J.P. Shock, AdS/CFT with flavour in electric and magnetic Kalb-Ramond fields, JHEP 12 (2007) 091 [arXiv:0709.1551] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in Gauge/Gravity Duals — A Review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Finite temperature large-N gauge theory with quarks in an external magnetic field, JHEP 07 (2008) 080 [arXiv:0709.1547] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C.V. Johnson and A. Kundu, External Fields and Chiral Symmetry Breaking in the Sakai-Sugimoto Model, JHEP 12 (2008) 053 [arXiv:0803.0038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    A. Zayakin, QCD Vacuum Properties in a Magnetic Field from AdS/CFT: Chiral Condensate and Goldstone Mass, JHEP 07 (2008) 116 [arXiv:0807.2917] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    V.G. Filev, C.V. Johnson and J.P. Shock, Universal Holographic Chiral Dynamics in an External Magnetic Field, JHEP 08 (2009) 013 [arXiv:0903.5345] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    V.G. Filev, Hot Defect Superconformal Field Theory in an External Magnetic Field, JHEP 11 (2009) 123 [arXiv:0910.0554] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Holographic Description of the Phase Diagram of a Chiral Symmetry Breaking Gauge Theory, JHEP 03 (2010) 132 [arXiv:1002.1885] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K. Jensen, A. Karch and E.G. Thompson, A Holographic Quantum Critical Point at Finite Magnetic Field and Finite Density, JHEP 05 (2010) 015 [arXiv:1002.2447] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless Transitions, Phys. Rev. Lett. 105 (2010) 041601 [arXiv:1002.3159] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Phase diagram of the D3/D5 system in a magnetic field and a BKT transition, Phys. Lett. B 698 (2011) 91 [arXiv:1003.2694] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Evans, A. Gebauer and K.-Y. Kim, E, B, μ, T Phase Structure of the D3/D7 Holographic Dual, JHEP 05 (2011) 067 [arXiv:1103.5627] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Bolognesi and D. Tong, Magnetic Catalysis in AdS4, arXiv:1110.5902 [INSPIRE].
  24. [24]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    C. Núñez, A. Paredes and A.V. Ramallo, Unquenched Flavor in the Gauge/Gravity Correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].Google Scholar
  26. [26]
    A. Paredes, On unquenched N = 2 holographic flavor, JHEP 12 (2006) 032 [hep-th/0610270] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Backreacting flavors in the Klebanov-Strassler background, JHEP 09 (2007) 109 [arXiv:0706.1238] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Casero, C. Núñez and A. Paredes, Elaborations on the String Dual to N = 1 SQCD, Phys. Rev. D 77 (2008) 046003 [arXiv:0709.3421] [INSPIRE].ADSGoogle Scholar
  29. [29]
    E. Caceres, R. Flauger, M. Ihl and T. Wrase, New supergravity backgrounds dual to N = 1 SQCD-like theories with N f = 2N c, JHEP 03 (2008) 020 [arXiv:0711.4878] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    F. Canoura, P. Merlatti and A.V. Ramallo, The Supergravity dual of 3d supersymmetric gauge theories with unquenched flavors, JHEP 05 (2008) 011 [arXiv:0803.1475] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    F. Bigazzi, A.L. Cotrone, C. Núñez and A. Paredes, Heavy quark potential with dynamical flavors: A First order transition, Phys. Rev. D 78 (2008) 114012 [arXiv:0806.1741] [INSPIRE].ADSGoogle Scholar
  32. [32]
    C. Hoyos-Badajoz, C. Núñez and I. Papadimitriou, Comments on the String dual to N = 1 SQCD, Phys. Rev. D 78 (2008) 086005 [arXiv:0807.3039] [INSPIRE].ADSGoogle Scholar
  33. [33]
    D. Arean, P. Merlatti, C. Núñez and A.V. Ramallo, String duals of two-dimensional (4, 4) supersymmetric gauge theories, JHEP 12 (2008) 054 [arXiv:0810.1053] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Gaillard and J. Schmude, On the geometry of string duals with backreacting flavors, JHEP 01 (2009) 079 [arXiv:0811.3646] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    A.V. Ramallo, J.P. Shock and D. Zoakos, Holographic flavor in N = 4 gauge theories in 3d from wrapped branes, JHEP 02 (2009) 001 [arXiv:0812.1975] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    F. Bigazzi, A.L. Cotrone, A. Paredes and A.V. Ramallo, The Klebanov-Strassler model with massive dynamical flavors, JHEP 03 (2009) 153 [arXiv:0812.3399] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    F. Bigazzi, A.L. Cotrone, A. Paredes and A.V. Ramallo, Screening effects on meson masses from holography, JHEP 05 (2009) 034 [arXiv:0903.4747] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    C. Núñez, M. Piai and A. Rago, Wilson Loops in string duals of Walking and Flavored Systems, Phys. Rev. D 81 (2010) 086001 [arXiv:0909.0748] [INSPIRE].ADSGoogle Scholar
  39. [39]
    D. Arean, E. Conde and A.V. Ramallo, Gravity duals of 2d supersymmetric gauge theories, JHEP 12 (2009) 006 [arXiv:0909.3106] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    D. Elander, Glueball Spectra of SQCD-like Theories, JHEP 03 (2010) 114 [arXiv:0912.1600] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Arean, E. Conde, A.V. Ramallo and D. Zoakos, Holographic duals of SQCD models in low dimensions, JHEP 06 (2010) 095 [arXiv:1004.4212] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Gaillard, D. Martelli, C. Núñez and I. Papadimitriou, The warped, resolved, deformed conifold gets flavoured, Nucl. Phys. B 843 (2011) 1 [arXiv:1004.4638] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Schmude, Comments on the distinction between color- and flavor-branes and new D3-D7 solutions with eight supercharges, arXiv:1007.1201 [INSPIRE].
  44. [44]
    E. Conde and J. Gaillard, Kutasov-like duality from D5-branes wrapping hyperbolic cycles, Nucl. Phys. B 848 (2011) 431 [arXiv:1011.1451] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    E. Caceres, C. Núñez and L.A. Pando-Zayas, Heating up the Baryonic Branch with U-duality: A Unified picture of conifold black holes, JHEP 03 (2011) 054 [arXiv:1101.4123] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    D. Elander, J. Gaillard, C. Núñez and M. Piai, Towards multi-scale dynamics on the baryonic branch of Klebanov-Strassler, JHEP 07 (2011) 056 [arXiv:1104.3963] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E. Conde and A.V. Ramallo, On the gravity dual of Chern-Simons-matter theories with unquenched flavor, JHEP 07 (2011) 099 [arXiv:1105.6045] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    E. Conde, J. Gaillard and A.V. Ramallo, On the holographic dual of N = 1 SQCD with massive flavors, JHEP 10 (2011) 023 [arXiv:1107.3803] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    A. Barranco, E. Pallante and J.G. Russo, N = 1 SQCD-like theories with N f massive flavors from AdS/CFT and β-functions, JHEP 09 (2011) 086 [arXiv:1107.4002] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Unquenched flavors in the Klebanov-Witten model, JHEP 02 (2007) 090 [hep-th/0612118] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    F. Bigazzi, A.L. Cotrone and A. Paredes, Klebanov-Witten theory with massive dynamical flavors, JHEP 09 (2008) 048 [arXiv:0807.0298] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    F. Bigazzi, A.L. Cotrone, J. Mas, A. Paredes, A.V. Ramallo and J. Tarrio, D3-D7 quark-gluon Plasmas, JHEP 11 (2009) 117 [arXiv:0909.2865] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    F. Bigazzi, A.L. Cotrone and J. Tarrio, Hydrodynamics of fundamental matter, JHEP 02 (2010) 083 [arXiv:0912.3256] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    F. Bigazzi and A.L. Cotrone, An elementary stringy estimate of transport coefficients of large temperature QCD, JHEP 08 (2010) 128 [arXiv:1006.4634] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, D3-D7 quark-gluon Plasmas at Finite Baryon Density, JHEP 04 (2011) 060 [arXiv:1101.3560] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, Holographic Duals of Quark Gluon Plasmas with Unquenched Flavors, Commun. Theor. Phys. 57 (2012) 364 [arXiv:1110.1744] [INSPIRE].MATHCrossRefGoogle Scholar
  57. [57]
    V.G. Filev and D. Zoakos, Towards Unquenched Holographic Magnetic Catalysis, JHEP 08 (2011) 022 [arXiv:1106.1330] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J.M. Maldacena and J.G. Russo, Large-N limit of noncommutative gauge theories, JHEP 09 (1999) 025 [hep-th/9908134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    A. Hashimoto and N. Itzhaki, Noncommutative Yang-Mills and the AdS/CFT correspondence, Phys. Lett. B 465 (1999) 142 [hep-th/9907166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    R. Casero, C. Núñez and A. Paredes, Towards the string dual of N = 1 SQCD-like theories, Phys. Rev. D 73 (2006) 086005 [hep-th/0602027] [INSPIRE].ADSGoogle Scholar
  61. [61]
    F. Bigazzi, R. Casero, A. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFT’s with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    S. Hawking and G.T. Horowitz, The Gravitational Hamiltonian, action, entropy and surface terms, Class. Quant. Grav. 13 (1996) 1487 [gr-qc/9501014] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  63. [63]
    D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    F. Preis, A. Rebhan and A. Schmitt, Inverse magnetic catalysis in dense holographic matter, JHEP 03 (2011) 033 [arXiv:1012.4785] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The Effects of topological charge change in heavy ion collisions: ’Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].ADSGoogle Scholar
  67. [67]
    S.-i. Nam, Chiral magnetic effect at low temperature, Phys. Rev. D 80 (2009) 114025 [arXiv:0911.0509] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A. Rebhan, A. Schmitt and S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP 01 (2010) 026 [arXiv:0909.4782] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Gorsky, P. Kopnin and A. Zayakin, On the Chiral Magnetic Effect in Soft-Wall AdS/QCD, Phys. Rev. D 83 (2011) 014023 [arXiv:1003.2293] [INSPIRE].ADSGoogle Scholar
  70. [70]
    M. Chernodub, Superconductivity of QCD vacuum in strong magnetic field, Phys. Rev. D 82 (2010) 085011 [arXiv:1008.1055] [INSPIRE].ADSGoogle Scholar
  71. [71]
    M. Chernodub, Spontaneous electromagnetic superconductivity of vacuum in strong magnetic field: evidence from the Nambu-Jona-Lasinio model, Phys. Rev. Lett. 106 (2011) 142003 [arXiv:1101.0117] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    V. Braguta, P. Buividovich, M. Chernodub and M. Polikarpov, Electromagnetic superconductivity of vacuum induced by strong magnetic field: numerical evidence in lattice gauge theory, arXiv:1104.3767 [INSPIRE].
  73. [73]
    N. Callebaut, D. Dudal and H. Verschelde, Holographic rho mesons in an external magnetic field, arXiv:1105.2217 [INSPIRE].
  74. [74]
    M. Ammon, J. Erdmenger, P. Kerner and M. Strydom, Black Hole Instability Induced by a Magnetic Field, Phys. Lett. B 706 (2011) 94 [arXiv:1106.4551] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Johanna Erdmenger
    • 1
  • Veselin Filev
    • 1
    • 2
  • Dimitrios Zoakos
    • 3
  1. 1.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenGermany
  2. 2.School of Theoretical Physics, Dublin Institute for Advanced StudiesDublin 4Ireland
  3. 3.Centro de Fısica do Porto & Departamento de Física e Astronomia, Faculdade de Ciências daUniversidade do PortoPortoPortugal

Personalised recommendations