Advertisement

Direct stau production at hadron colliders in cosmologically motivated scenarios

  • Jonas M. Lindert
  • Frank D. Steffen
  • Maike K. Trenkel
Article

Abstract

We calculate dominant cross section contributions for stau pair production at hadron colliders within the MSSM, taking into account left-right mixing of the stau eigenstates. We find that b-quark annihilation and gluon fusion can enhance the cross sections by more than one order of magnitude with respect to the Drell-Yan predictions. These additional production channels are not yet included in the common Monte Carlo analysis programs and have been neglected in experimental analyses so far. For long-lived staus, we investigate differential distributions and prospects for their stopping in the collider detectors. New possible strategies are outlined to determine the mass and width of the heavy CP-even Higgs boson H 0. Scans of the relevant regions in the CMSSM are performed and predictions are given for the current experiments at the LHC and the Tevatron. The obtained insights allow us to propose collider tests of cosmologically motivated scenarios with long-lived staus that have an exceptionally small thermal relic abundance.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM Supersymmetric Standard Model Hadronic Colliders 

References

  1. [1]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).Google Scholar
  2. [2]
    H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    S.P. Martin, A Supersymmetry Primer, hep-ph/9709356 [SPIRES].
  5. [5]
    M. Drees, R. Godbole and P. Roy, Theory and Phenomenology of Sparticles: An account of four-dimensional N = 1 supersymmetry in high energy physics, World Scientific, Hackensack U.S.A. (2004).Google Scholar
  6. [6]
    H. Baer and X. Tata, Weak scale supersymmetry: From superfields to scattering events, Cambridge University Press, Cambridge U.S.A. (2006).CrossRefGoogle Scholar
  7. [7]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    E.A. Baltz, M. Battaglia, M.E. Peskin and T. Wizansky, Determination of dark matter properties at high-energy colliders, Phys. Rev. D 74 (2006) 103521 [hep-ph/0602187] [SPIRES].ADSGoogle Scholar
  9. [9]
    F.D. Steffen, Dark Matter Candidates — Axions, Neutralinos, Gravitinos and Axinos, Eur. Phys. J. C 59 (2009) 557 [arXiv:0811.3347] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    CMS collaboration, V. Khachatryan et al., Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [SPIRES].ADSGoogle Scholar
  11. [11]
    ATLAS collaboration, J.B.G. da Costa et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    P. Bechtle et al., What if the LHC does not find supersymmetry in the \( \sqrt {s} = 7 \) TeV run?, Phys. Rev. D 84 (2011) 011701 [arXiv:1102.4693] [SPIRES].ADSGoogle Scholar
  13. [13]
    M.J. Dolan, D. Grellscheid, J. Jaeckel, V.V. Khoze and P. Richardson, New Constraints on Gauge Mediation and Beyond from LHC SUSY Searches at 7 TeV, JHEP 06 (2011) 095 [arXiv:1104.0585] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys. 13 (2000) 181 [hep-ph/9905481] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  16. [16]
    A.G. Akeroyd, M.A. Diaz, J. Ferrandis, M.A. Garcia-Jareno and J.W.F. Valle, Charged Higgs boson and stau phenomenology in the simplest R-parity breaking model, Nucl. Phys. B 529 (1998) 3 [hep-ph/9707395] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    B.C. Allanach, A. Dedes and H.K. Dreiner, The R parity violating minimal supergravity model, Phys. Rev. D 69 (2004) 115002 [hep-ph/0309196] [SPIRES].ADSGoogle Scholar
  18. [18]
    W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino dark matter in R-parity breaking vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    H.K. Dreiner, S. Grab and M.K. Trenkel, Stau LSP Phenomenology: Two versus Four-Body Decay Modes. Example: Resonant Single Slepton Production at the LHC, Phys. Rev. D 79 (2009) 016002 [arXiv:0808.3079] [SPIRES].ADSGoogle Scholar
  20. [20]
    K. Desch, S. Fleischmann, P. Wienemann, H.K. Dreiner and S. Grab, Stau as the Lightest Supersymmetric Particle in R-Parity Violating SUSY Models: Discovery Potential with Early LHC Data, Phys. Rev. D 83 (2011) 015013 [arXiv:1008.1580] [SPIRES].ADSGoogle Scholar
  21. [21]
    S. Ambrosanio, G.D. Kribs and S.P. Martin, Signals for gauge-mediated supersymmetry breaking models at the CERN LEP2 collider, Phys. Rev. D 56 (1997) 1761 [hep-ph/9703211] [SPIRES].ADSGoogle Scholar
  22. [22]
    J.L. Feng and T. Moroi, Tevatron signatures of longlived charged sleptons in gauge mediated supersymmetry breaking models, Phys. Rev. D 58 (1998) 035001 [hep-ph/9712499] [SPIRES].ADSGoogle Scholar
  23. [23]
    S.P. Martin and J.D. Wells, Cornering gauge-mediated supersymmetry breaking with quasi-stable sleptons at the Tevatron, Phys. Rev. D 59 (1999) 035008, [hep-ph/9805289] [SPIRES].ADSGoogle Scholar
  24. [24]
    S. Ambrosanio, B. Mele, S. Petrarca, G. Polesello and A. Rimoldi, Measuring the SUSY breaking scale at the LHC in the slepton NLSP scenario of GMSB models, JHEP 01 (2001) 014 [hep-ph/0010081].ADSCrossRefGoogle Scholar
  25. [25]
    W. Buchmüller, K. Hamaguchi, M. Ratz and T. Yanagida, Supergravity at colliders, Phys. Lett. B 588 (2004) 90 [hep-ph/0402179] [SPIRES].ADSGoogle Scholar
  26. [26]
    F.D. Steffen, Gravitino dark matter and cosmological constraints, JCAP 09 (2006) 001 [hep-ph/0605306] [SPIRES].ADSGoogle Scholar
  27. [27]
    J.R. Ellis, A.R. Raklev and O.K. Oye, Gravitino dark matter scenarios with massive metastable charged sparticles at the LHC, JHEP 10 (2006) 061 [hep-ph/0607261] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    L. Covi, L. Roszkowski, R. Ruiz de Austri and M. Small, Axino dark matter and the CMSSM, JHEP 06 (2004) 003 [hep-ph/0402240] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    A. Brandenburg, L. Covi, K. Hamaguchi, L. Roszkowski and F.D. Steffen, Signatures of axinos and gravitinos at colliders, Phys. Lett. B 617 (2005) 99 [hep-ph/0501287] [SPIRES].ADSGoogle Scholar
  30. [30]
    A. Freitas, F.D. Steffen, N. Tajuddin and D. Wyler, Axinos in Cosmology and at Colliders, JHEP 06 (2011) 036 [arXiv:1105.1113] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    K. Hamaguchi, Y. Kuno, T. Nakaya and M.M. Nojiri, A study of late decaying charged particles at future colliders, Phys. Rev. D 70 (2004) 115007 [hep-ph/0409248] [SPIRES].ADSGoogle Scholar
  32. [32]
    K. Ishiwata, T. Ito and T. Moroi, Long-Lived Unstable Superparticles at the LHC, Phys. Lett. B 669 (2008) 28 [arXiv:0807.0975] [SPIRES].ADSGoogle Scholar
  33. [33]
    S. Biswas and B. Mukhopadhyaya, Chargino reconstruction in supersymmetry with long-lived staus, Phys. Rev. D 81 (2010) 015003 [arXiv:0910.3446] [SPIRES].ADSGoogle Scholar
  34. [34]
    J.L. Feng et al., Measuring Slepton Masses and Mixings at the LHC, JHEP 01 (2010) 047 [arXiv:0910.1618] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    T. Ito, R. Kitano and T. Moroi, Measurement of the Superparticle Mass Spectrum in the Long-Lived Stau Scenario at the LHC, JHEP 04 (2010) 017 [arXiv:0910.5853] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    J.J. Heckman, J. Shao and C. Vafa, F-theory and the LHC: Stau Search, JHEP 09 (2010) 020 [arXiv:1001.4084] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    R. Kitano and M. Nakamura, Tau polarization measurements at the LHC in supersymmetric models with a long-lived stau, Phys. Rev. D 82 (2010) 035007 [arXiv:1006.2904] [SPIRES].ADSGoogle Scholar
  38. [38]
    T. Ito and T. Moroi, Spin and Chirality Determination of Superparticles with Long-Lived Stau at the LHC, Phys. Lett. B 694 (2011) 349 [arXiv:1007.3060] [SPIRES].ADSGoogle Scholar
  39. [39]
    T. Ito, Squark Mass Measurement in the Long-lived Stau Scenario at the LHC, Phys. Lett. B 699 (2011) 151 [arXiv:1012.1318] [SPIRES].ADSGoogle Scholar
  40. [40]
    S. Asai, Y. Azuma, M. Endo, K. Hamaguchi and S. Iwamoto, Stau Kinks at the LHC, arXiv:1103.1881 [SPIRES].
  41. [41]
    H.U. Martyn, Detecting metastable staus and gravitinos at the ILC, Eur. Phys. J. C 48 (2006) 15 [hep-ph/0605257] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    S. Asai, K. Hamaguchi and S. Shirai, Measuring lifetimes of long-lived charged massive particles stopped in LHC detectors, Phys. Rev. Lett. 103 (2009) 141803 [arXiv:0902.3754] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    J. Pinfold and L. Sibley, Measuring the Lifetime of Trapped Sleptons Using the General Purpose LHC Detectors, Phys. Rev. D 83 (2011) 035021 [arXiv:1006.3293] [SPIRES].ADSGoogle Scholar
  44. [44]
    J.L. Goity, W.J. Kossler and M. Sher, Production, collection and utilization of very longlived heavy charged leptons, Phys. Rev. D 48 (1993) 5437 [hep-ph/9305244] [SPIRES].ADSGoogle Scholar
  45. [45]
    J.L. Feng and B.T. Smith, Slepton trapping at the Large Hadron and International Linear Colliders, Phys. Rev. D 71 (2005) 015004 [hep-ph/0409278] [SPIRES].ADSGoogle Scholar
  46. [46]
    K. Hamaguchi, M.M. Nojiri and A. de Roeck, Prospects to study a long-lived charged next lightest supersymmetric particle at the LHC, JHEP 03 (2007) 046 [hep-ph/0612060] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    R.H. Cyburt, J.R. Ellis, B.D. Fields and K.A. Olive, Updated nucleosynthesis constraints on unstable relic particles, Phys. Rev. D 67 (2003) 103521 [astro-ph/0211258] [SPIRES].ADSGoogle Scholar
  48. [48]
    M. Kawasaki, K. Kohri and T. Moroi, Big-bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [SPIRES].ADSGoogle Scholar
  49. [49]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [SPIRES].ADSGoogle Scholar
  50. [50]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [SPIRES].ADSGoogle Scholar
  51. [51]
    M. Pospelov, Particle physics catalysis of thermal big bang nucleosynthesis, Phys. Rev. Lett. 98 (2007) 231301 [hep-ph/0605215] [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    R.H. Cyburt, J.R. Ellis, B.D. Fields, K.A. Olive and V.C. Spanos, Bound-state effects on light-element abundances in gravitino dark matter scenarios, JCAP 11 (2006) 014 [astro-ph/0608562] [SPIRES].ADSGoogle Scholar
  53. [53]
    K. Hamaguchi, T. Hatsuda, M. Kamimura, Y. Kino and T.T. Yanagida, Stau-catalyzed Li-6 production in big-bang nucleosynthesis, Phys. Lett. B 650 (2007) 268 [hep-ph/0702274] [SPIRES].ADSGoogle Scholar
  54. [54]
    J. Pradler and F.D. Steffen, Implications of Catalyzed BBN in the CMSSM with Gravitino Dark Matter, Phys. Lett. B 666 (2008) 181 [arXiv:0710.2213] [SPIRES].ADSGoogle Scholar
  55. [55]
    M. Pospelov, Bridging the primordial A = 8 divide with Catalyzed Big Bang Nucleosynthesis, arXiv:0712.0647 [SPIRES].
  56. [56]
    M. Pospelov, J. Pradler and F.D. Steffen, Constraints on Supersymmetric Models from Catalytic Primordial Nucleosynthesis of Beryllium, JCAP 11 (2008) 020 [arXiv:0807.4287] [SPIRES].ADSGoogle Scholar
  57. [57]
    F.D. Steffen, Constraints on Gravitino Dark Matter Scenarios with Long-Lived Charged Sleptons, AIP Conf. Proc. 903 (2007) 595 [hep-ph/0611027] [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    J. Pradler and F.D. Steffen, Constraints on the reheating temperature in gravitino dark matter scenarios, Phys. Lett. B 648 (2007) 224 [hep-ph/0612291] [SPIRES].ADSGoogle Scholar
  59. [59]
    J. Kersten and K. Schmidt-Hoberg, The Gravitino-Stau Scenario after Catalyzed BBN, JCAP 01 (2008) 011 [arXiv:0710.4528] [SPIRES].ADSGoogle Scholar
  60. [60]
    J. Pradler and F.D. Steffen, CBBN in the CMSSM, Eur. Phys. J. C 56 (2008) 287 [arXiv:0710.4548] [SPIRES].ADSCrossRefGoogle Scholar
  61. [61]
    S. Bailly, K. Jedamzik and G. Moultaka, Gravitino Dark Matter and the Cosmic Lithium Abundances, Phys. Rev. D 80 (2009) 063509 [arXiv:0812.0788] [SPIRES].ADSGoogle Scholar
  62. [62]
    A. Freitas, F.D. Steffen, N. Tajuddin and D. Wyler, Upper Limits on the Peccei-Quinn Scale and on the Reheating Temperature in Axino Dark Matter Scenarios, Phys. Lett. B 679 (2009) 270 [arXiv:0904.3218] [SPIRES].ADSGoogle Scholar
  63. [63]
    M. Bolz, A. Brandenburg and W. Buchmüller, Thermal Production of Gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid B 790 (2008) 336] [hep-ph/0012052] [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    A. Brandenburg and F.D. Steffen, Axino dark matter from thermal production, JCAP 08 (2004) 008 [hep-ph/0405158] [SPIRES].ADSGoogle Scholar
  65. [65]
    J. Pradler and F.D. Steffen, Thermal Gravitino Production and Collider Tests of Leptogenesis, Phys. Rev. D 75 (2007) 023509 [hep-ph/0608344] [SPIRES].ADSGoogle Scholar
  66. [66]
    V.S. Rychkov and A. Strumia, Thermal production of gravitinos, Phys. Rev. D 75 (2007) 075011 [hep-ph/0701104] [SPIRES].ADSGoogle Scholar
  67. [67]
    A. Strumia, Thermal production of axino Dark Matter, JHEP 06 (2010) 036 [arXiv:1003.5847] [SPIRES].ADSCrossRefGoogle Scholar
  68. [68]
    K.J. Bae, K. Choi and S.H. Im, Effective interactions of axion supermultiplet and thermal production of axino dark matter, arXiv:1106.2452 [SPIRES].
  69. [69]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [SPIRES].ADSGoogle Scholar
  70. [70]
    S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [SPIRES].ADSGoogle Scholar
  71. [71]
    W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Ann. Phys. 315 (2005) 305 [hep-ph/0401240] [SPIRES].MATHADSCrossRefGoogle Scholar
  72. [72]
    S. Blanchet and P. Di Bari, Flavor effects on leptogenesis predictions, JCAP 03 (2007) 018 [hep-ph/0607330] [SPIRES].ADSGoogle Scholar
  73. [73]
    S. Antusch and A.M. Teixeira, Towards constraints on the SUSY seesaw from flavour-dependent leptogenesis, JCAP 02 (2007) 024 [hep-ph/0611232] [SPIRES].ADSGoogle Scholar
  74. [74]
    M. Ratz, K. Schmidt-Hoberg and M.W. Winkler, A note on the primordial abundance of stau NLSPs, JCAP 10 (2008) 026 [arXiv:0808.0829] [SPIRES].ADSGoogle Scholar
  75. [75]
    J. Pradler and F.D. Steffen, Thermal relic abundances of long-lived staus, Nucl. Phys. B 809 (2009) 318 [arXiv:0808.2462] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    E. Eichten, I. Hinchliffe, K.D. Lane and C. Quigg, Super Collider Physics, Rev. Mod. Phys. 56 (1984) 579 [SPIRES].ADSCrossRefGoogle Scholar
  77. [77]
    H. Baer, B.W. Harris and M.H. Reno, Next-to-leading order slepton pair production at hadron colliders, Phys. Rev. D 57 (1998) 5871 [hep-ph/9712315] [SPIRES].ADSGoogle Scholar
  78. [78]
    W. Beenakker et al., The Production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [hep-ph/9906298] [SPIRES].ADSCrossRefGoogle Scholar
  79. [79]
    G. Bozzi, B. Fuks and M. Klasen, Transverse-momentum resummation for slepton-pair production at the LHC, Phys. Rev. D 74 (2006) 015001 [hep-ph/0603074] [SPIRES].ADSGoogle Scholar
  80. [80]
    G. Bozzi, B. Fuks and M. Klasen, Threshold Resummation for Slepton-Pair Production at Hadron Colliders, Nucl. Phys. B 777 (2007) 157 [hep-ph/0701202] [SPIRES].ADSCrossRefGoogle Scholar
  81. [81]
    G. Bozzi, B. Fuks and M. Klasen, Joint resummation for slepton pair production at hadron colliders, Nucl. Phys. B 794 (2008) 46 [arXiv:0709.3057] [SPIRES].ADSCrossRefGoogle Scholar
  82. [82]
  83. [83]
    F. del Aguila and L. Ametller, On the detectability of sleptons at large hadron colliders, Phys. Lett. B 261 (1991) 326 [SPIRES].ADSGoogle Scholar
  84. [84]
    M. Bisset, S. Raychaudhuri and P. Roy, Higgs-mediated Slepton Pair-production at the Large Hadron Collider, hep-ph/9602430 [SPIRES].
  85. [85]
    F. Borzumati and K. Hagiwara, Testing supersymmetry at the LHC through gluon-fusion production of a slepton pair, JHEP 03 (2011) 103 [arXiv:0912.0454] [SPIRES].ADSCrossRefGoogle Scholar
  86. [86]
    T. Sjöstrand et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135 (2001) 238 [hep-ph/0010017] [SPIRES].MATHADSCrossRefGoogle Scholar
  87. [87]
    G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].ADSCrossRefGoogle Scholar
  88. [88]
    N. Tajuddin, Axinos in the Sky and on Earth, Ph.D. Thesis, University of Zürich, Zürich Switzerland (2010).Google Scholar
  89. [89]
    H. Baer, S. Kraml, A. Lessa and S. Sekmen, Thermal leptogenesis and the gravitino problem in the Asaka-Yanagida axion/axino dark matter scenario, JCAP 04 (2011) 039 [arXiv:1012.3769] [SPIRES].ADSGoogle Scholar
  90. [90]
    C. Cheung, G. Elor and L.J. Hall, The Cosmological Axino Problem, arXiv:1104.0692 [SPIRES].
  91. [91]
    G.G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741 (2008) 51 [hep-ph/0611350] [SPIRES].ADSCrossRefGoogle Scholar
  92. [92]
    M. Drees and X. Tata, Signals for heavy exotics at hadron colliders and supercolliders, Phys. Lett. B 252 (1990) 695 [SPIRES].ADSGoogle Scholar
  93. [93]
    A. Nisati, S. Petrarca and G. Salvini, On the possible detection of massive stable exotic particles at the LHC, Mod. Phys. Lett. A 12 (1997) 2213 [hep-ph/9707376] [SPIRES].ADSGoogle Scholar
  94. [94]
    M. Fairbairn et al., Stable massive particles at colliders, Phys. Rept. 438 (2007) 1 [hep-ph/0611040] [SPIRES].ADSCrossRefGoogle Scholar
  95. [95]
    J.L. Feng, M. Kamionkowski and S.K. Lee, Light Gravitinos at Colliders and Implications for Cosmology, Phys. Rev. D 82 (2010) 015012 [arXiv:1004.4213] [SPIRES].ADSGoogle Scholar
  96. [96]
    LEP2 SUSY Working Group collaboration, Combined LEP GMSB Stau/Smuon/Selectron Results, 189–208 GeV, http://lepsusy.web.cern.ch/lepsusy/www/gmsb_summer02/lepgmsb.html.
  97. [97]
    D0 collaboration, V.M. Abazov et al., Search for Long-Lived Charged Massive Particles with the D0 Detector, Phys. Rev. Lett. 102 (2009) 161802 [arXiv:0809.4472] [SPIRES].ADSCrossRefGoogle Scholar
  98. [98]
    CDF collaboration, T. Aaltonen et al., Search for Long-Lived Massive Charged Particles in 1.96 TeV \( p\bar{p} \) Collisions, Phys. Rev. Lett. 103 (2009) 021802 [arXiv:0902.1266] [SPIRES].ADSCrossRefGoogle Scholar
  99. [99]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [SPIRES].MATHADSCrossRefGoogle Scholar
  100. [100]
    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [SPIRES].MATHADSCrossRefGoogle Scholar
  101. [101]
    T. Asaka, K. Hamaguchi and K. Suzuki, Cosmological gravitino problem in gauge mediated supersymmetry breaking models, Phys. Lett. B 490 (2000) 136 [hep-ph/0005136] [SPIRES].ADSGoogle Scholar
  102. [102]
    M. Fujii, M. Ibe and T. Yanagida, Upper bound on gluino mass from thermal leptogenesis, Phys. Lett. B 579 (2004) 6 [hep-ph/0310142] [SPIRES].ADSGoogle Scholar
  103. [103]
    C.F. Berger, L. Covi, S. Kraml and F. Palorini, The number density of a charged relic, JCAP 10 (2008) 005 [arXiv:0807.0211] [SPIRES].ADSGoogle Scholar
  104. [104]
    A. Freitas, F.D. Steffen, N. Tajuddin and D. Wyler, Late Energy Injection and Cosmological Constraints in Axino Dark Matter Scenarios, Phys. Lett. B 682 (2009) 193 [arXiv:0909.3293] [SPIRES].ADSGoogle Scholar
  105. [105]
    J. Hasenkamp and J. Kersten, Leptogenesis, Gravitino Dark Matter and Entropy Production, Phys. Rev. D 82 (2010) 115029 [arXiv:1008.1740] [SPIRES].ADSGoogle Scholar
  106. [106]
    J.F. Gunion and H.E. Haber, The CP-conserving two-Higgs-doublet model: The approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [SPIRES].ADSGoogle Scholar
  107. [107]
    M. Endo, K. Hamaguchi and K. Nakaji, Probing High Reheating Temperature Scenarios at the LHC with Long-Lived Staus, JHEP 11 (2010) 004 [arXiv:1008.2307] [SPIRES].ADSCrossRefGoogle Scholar
  108. [108]
    J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of stau’s, Phys. Lett. B 696 (2011) 92 [arXiv:1011.0260] [SPIRES].ADSGoogle Scholar
  109. [109]
    A.D. Linde, Decay of the False Vacuum at Finite Temperature, Nucl. Phys. B 216 (1983) 421 [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  110. [110]
    J.R. Espinosa, Dominant Two-Loop Corrections to the MSSM Finite Temperature Effective Potential, Nucl. Phys. B 475 (1996) 273 [hep-ph/9604320] [SPIRES].ADSCrossRefGoogle Scholar
  111. [111]
    M. Endo, K. Hamaguchi and K. Nakaji, LHC signature with long-lived stau in high reheating temperature scenario, arXiv:1105.3823 [SPIRES].
  112. [112]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and tau-lepton Properties, arXiv:1010.1589 [SPIRES].
  113. [113]
    M. Schumacher and f.t.A. collaboration, Higgs Boson Searches with ATLAS based on 2010 Data, arXiv:1106.2496 [SPIRES].
  114. [114]
    CMS collaboration, S. Chatrchyan et al., Search for Neutral MSSM Higgs Bosons Decaying to Tau Pairs in pp Collisions at \( \sqrt {s} = 7 \) TeV, Phys. Rev. Lett. 106 (2011) 231801 [arXiv:1104.1619] [SPIRES].ADSCrossRefGoogle Scholar
  115. [115]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [SPIRES].MATHADSCrossRefGoogle Scholar
  116. [116]
    T. Hahn and M. Pérez-Victoria, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [SPIRES].ADSCrossRefGoogle Scholar
  117. [117]
    M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [SPIRES].ADSCrossRefGoogle Scholar
  118. [118]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [SPIRES].
  119. [119]
    L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [SPIRES].ADSGoogle Scholar
  120. [120]
    R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [SPIRES].ADSGoogle Scholar
  121. [121]
    M.S. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [SPIRES].ADSCrossRefGoogle Scholar
  122. [122]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [SPIRES].ADSCrossRefGoogle Scholar
  123. [123]
    M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \bar{t}b{H^{+} } \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [SPIRES].ADSCrossRefGoogle Scholar
  124. [124]
    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the MSSM Higgs sector at O(α b α s), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114] [SPIRES].ADSCrossRefGoogle Scholar
  125. [125]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [SPIRES].ADSCrossRefGoogle Scholar
  126. [126]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].ADSCrossRefGoogle Scholar
  127. [127]
    A.R. Raklev, Massive Metastable Charged (S)Particles at the LHC, Mod. Phys. Lett. A 24 (2009) 1955 [arXiv:0908.0315] [SPIRES].ADSGoogle Scholar
  128. [128]
    CMS collaboration, Search for heavy stable charged particles with 100 inverse picobarns and 1 inverse femtobarn in the cms experiment, CMS report, CMS-PAS-EXO-08-003.
  129. [129]
    A. De Roeck et al., Supersymmetric benchmarks with non-universal scalar masses or gravitino dark matter, Eur. Phys. J. C 49 (2007) 1041 [hep-ph/0508198] [SPIRES].ADSCrossRefGoogle Scholar
  130. [130]
    ATLAS collaboration, G. Aad et al., Search for stable hadronising squarks and gluinos with the ATLAS experiment at the LHC, Phys. Lett. B 701 (2011) 1 [arXiv:1103.1984] [SPIRES].ADSGoogle Scholar
  131. [131]
    CMS collaboration, V. Khachatryan et al., Search for Heavy Stable Charged Particles in pp collisions at \( \sqrt {s} = 7 \) TeV, JHEP 03 (2011) 024 [arXiv:1101.1645] [SPIRES].ADSCrossRefGoogle Scholar
  132. [132]
    J. Heisig and J. Kersten, Production of long-lived staus in the Drell-Yan process, arXiv:1106.0764 [SPIRES].
  133. [133]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [SPIRES].ADSCrossRefGoogle Scholar
  134. [134]
    A. Arbey and F. Mahmoudi, SuperIso Relic v3.0: A program for calculating relic density and flavour physics observables: Extension to NMSSM, Comput. Phys. Commun. 182 (2011) 1582 [SPIRES].ADSCrossRefGoogle Scholar
  135. [135]
    M. Drees and S.P. Martin, Implications of SUSY model building, hep-ph/9504324 [SPIRES].
  136. [136]
    CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [SPIRES].ADSGoogle Scholar
  137. [137]
    the LHCb collaboration, R. Aaij et al., Search for the rare decays Bs → mumu and Bd → mumu, Phys. Lett. B 699 (2011) 330 [arXiv:1103.2465] [SPIRES].ADSGoogle Scholar
  138. [138]
    H.E. Haber, Higgs boson masses and couplings in the minimal supersymmetric model, hep-ph/9707213 [SPIRES].
  139. [139]
    J. Germer, W. Hollik and E. Mirabella, Hadronic production of bottom-squark pairs with electroweak contributions, JHEP 05 (2011) 068 [arXiv:1103.1258] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Jonas M. Lindert
    • 1
  • Frank D. Steffen
    • 1
  • Maike K. Trenkel
    • 2
  1. 1.Max-Planck-Institut für PhysikMünchenGermany
  2. 2.Phenomenology Institute, Department of PhysicsUniversity of Wisconsin-MadisonMadisonU.S.A.

Personalised recommendations