Advertisement

Super-Yang-Mills and M5-branes

  • Harvendra Singh
Article

Abstract

We uplift 5-dimensional super-Yang-Mills theory to a 6-dimensional gauge theory with the help of a space-like constant vector η M , whose norm determines the YM coupling constant. After the localization of η M the 6D gauge theory acquires Lorentzian invariance as well as scale invariance. We discuss KK states, instantons and the flux quantization. The theory admits extended solutions like 1/2 BPS ‘strings’ and monopoles.

Keywords

AdS-CFT Correspondence M-Theory 

References

  1. [1]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].ADSMathSciNetGoogle Scholar
  2. [2]
    J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    A. Gustavsson, Selfdual strings and loop space Nahm equations, JHEP 04 (2008) 083 [arXiv:0802.3456] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, Supersymmetric Yang-Mills theory from Lorentzian three-algebras, JHEP 08 (2008) 094 [arXiv:0806.0738] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    S. Benvenuti, D. Rodriguez-Gomez, E. Tonni and H. Verlinde, N = 8 superconformal gauge theories and M2 branes, JHEP 01 (2009) 078 [arXiv:0805.1087] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    M.A. Bandres, A.E. Lipstein and J.H. Schwarz, Ghost-free superconformal action for multiple M2-branes, JHEP 07 (2008) 117 [arXiv:0806.0054] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    M.A. Bandres, A.E. Lipstein and J.H. Schwarz, N = 8 superconformal Chern-Simons theories, JHEP 05 (2008) 025 [arXiv:0803.3242] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    B. Ezhuthachan, S. Mukhi and C. Papageorgakis, D2 to D2, JHEP 07 (2008) 041 [arXiv:0806.1639] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    C. Krishnan and C. Maccaferri, Membranes on calibrations, JHEP 07 (2008) 005 [arXiv:0805.3125] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    H. Singh, M2-branes on a resolved C 4/Z 4, JHEP 09 (2008) 071 [arXiv:0807.5016] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    C. Krishnan, C. Maccaferri and H. Singh, M2-brane flows and the Chern-Simons level, JHEP 05 (2009) 114 [arXiv:0902.0290] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    H. Singh, SU(N) membrane BF theory with dual-pairs, Phys. Lett. B 673 (2009) 68 [arXiv:0811.1690] [SPIRES].ADSGoogle Scholar
  15. [15]
    N. Lambert and C. Papageorgakis, Nonabelian (2, 0) tensor multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [SPIRES].ADSGoogle Scholar
  17. [17]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-branes, D4-branes and quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    P.-M. Ho, K.-W. Huang and Y. Matsuo, A non-Abelian self-dual gauge theory in 5 + 1 dimensions, JHEP 07 (2011) 021 [arXiv:1104.4040] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in six-dimensions, Nucl. Phys. B 221 (1983) 331 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    P.S. Howe, N.D. Lambert and P.C. West, The self-dual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103 [hep-th/9610234] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  22. [22]
    M. Perry and J.H. Schwarz, Interacting chiral gauge fields in six dimensions and Born-Infeld theory, Nucl. Phys. B 489 (1997) 47 [hep-th/9611065] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    P. Pasti, D.P. Sorokin and M. Tonin, On Lorentz invariant actions for chiral p-forms, Phys. Rev. D 55 (1997) 6292 [hep-th/9611100] [SPIRES].ADSMathSciNetGoogle Scholar
  24. [24]
    I.A. Bandos et al., Covariant action for the super-five-brane of M-theory, Phys. Rev. Lett. 78 (1997) 4332 [hep-th/9701149] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  25. [25]
    C.M. Hull, BPS supermultiplets in five dimensions, JHEP 06 (2000) 019 [hep-th/0004086] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    P.S. Howe and E. Sezgin, D = 11, p = 5, Phys. Lett. B 394 (1997) 62 [hep-th/9611008] [SPIRES].ADSMathSciNetGoogle Scholar
  27. [27]
    P.S. Howe, E. Sezgin and P.C. West, Covariant field equations of the M-theory five-brane, Phys. Lett. B 399 (1997) 49 [hep-th/9702008] [SPIRES].ADSMathSciNetGoogle Scholar
  28. [28]
    K.-M. Lee and J.-H. Park, 5D actions for 6D self-dual tensor field theory, Phys. Rev. D 64 (2001) 105006 [hep-th/0008103] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Theory DivisionSaha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations