Advertisement

Holographic renormalization for irrelevant operators and multi-trace counterterms

  • Balt C. van Rees
Article

Abstract

We investigate the structure of holographic renormalization in the presence of sources for irrelevant operators. By working perturbatively in the sources we avoid issues related to the non-renormalizability of the dual field theory. We find new classes of divergences which appear to be non-local on the gravity side. However in all cases a systematic renormalization procedure exists involving either standard local counterterms or new counterterms which may be interpreted as multi-trace counterterms in the field theory. The multi-trace counterterms reflect a more intricate relation between sources and the asymptotics of bulk fields.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].ADSMathSciNetGoogle Scholar
  2. [2]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].ADSMathSciNetGoogle Scholar
  4. [4]
    A. Hashimoto and N. Itzhaki, Non-commutative Yang-Mills and the AdS/CFT correspondence, Phys. Lett. B 465 (1999) 142 [hep-th/9907166] [SPIRES].ADSMathSciNetGoogle Scholar
  5. [5]
    J.M. Maldacena and J.G. Russo, Large-N limit of non-commutative gauge theories, JHEP 09 (1999) 025 [hep-th/9908134] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    R.N. Caldeira Costa and M. Taylor, Holography for chiral scale-invariant models, JHEP 02 (2011) 082 [arXiv:1010.4800] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES].ADSMathSciNetGoogle Scholar
  9. [9]
    G. Compere, W. Song and A. Virmani, Microscopics of Extremal Kerr from Spinning M5 Branes, arXiv:1010.0685 [SPIRES].
  10. [10]
    M. Guica and A. Strominger, Microscopic Realization of the Kerr/CFT Correspondence, JHEP 02 (2011) 010 [arXiv:1009.5039] [SPIRES].ADSMathSciNetGoogle Scholar
  11. [11]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217] [SPIRES].ADSMathSciNetGoogle Scholar
  13. [13]
    E.T. Akhmedov, Notes on multi-trace operators and holographic renormalization group, hep-th/0202055 [SPIRES].
  14. [14]
    I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [SPIRES].
  16. [16]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [SPIRES].CrossRefGoogle Scholar
  17. [17]
    J. de Boer, The holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [hep-th/0101026] [SPIRES].CrossRefMATHADSGoogle Scholar
  18. [18]
    D. Martelli and W. Mueck, Holographic renormalization and Ward identities with the Hamilton-Jacobi method, Nucl. Phys. B 654 (2003) 248 [hep-th/0205061] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    B.C. van Rees, Irrelevant deformations and the holographic Callan-Symanzik equation, [arXiv:1105.5396] [SPIRES].
  20. [20]
    M. Berkooz, A. Sever and A. Shomer, Double-trace deformations, boundary conditions and spacetime singularities, JHEP 05 (2002) 034 [hep-th/0112264] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [SPIRES].
  22. [22]
    W. Mueck, An improved correspondence formula for AdS/CFT with multi-trace operators, Phys. Lett. B 531 (2002) 301 [hep-th/0201100] [SPIRES].ADSGoogle Scholar
  23. [23]
    A. Sever and A. Shomer, A note on multi-trace deformations and AdS/CFT, JHEP 07 (2002) 027 [hep-th/0203168] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    S. Elitzur, A. Giveon, M. Porrati and E. Rabinovici, Multitrace deformations of vector and adjoint theories and their holographic duals, JHEP 02 (2006) 006 [hep-th/0511061] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    I. Papadimitriou, Holographic renormalization as a canonical transformation, JHEP 11 (2010) 014 [arXiv:1007.4592] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    K. Skenderis, M. Taylor and B.C. van Rees, AdS boundary conditions and the Topologically Massive Gravity/ CFT correspondence, arXiv:0909.5617 [SPIRES].
  29. [29]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].CrossRefMATHADSGoogle Scholar
  30. [30]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic Renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [SPIRES].ADSMathSciNetGoogle Scholar
  32. [32]
    I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  34. [34]
    E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/ CFT correspondence, hep-th/0201253 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsState University of New YorkStony BrookU.S.A.

Personalised recommendations