Holographic renormalization for irrelevant operators and multi-trace counterterms



We investigate the structure of holographic renormalization in the presence of sources for irrelevant operators. By working perturbatively in the sources we avoid issues related to the non-renormalizability of the dual field theory. We find new classes of divergences which appear to be non-local on the gravity side. However in all cases a systematic renormalization procedure exists involving either standard local counterterms or new counterterms which may be interpreted as multi-trace counterterms in the field theory. The multi-trace counterterms reflect a more intricate relation between sources and the asymptotics of bulk fields.


Gauge-gravity correspondence AdS-CFT Correspondence 


  1. [1]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].ADSMathSciNetGoogle Scholar
  2. [2]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].ADSMathSciNetGoogle Scholar
  4. [4]
    A. Hashimoto and N. Itzhaki, Non-commutative Yang-Mills and the AdS/CFT correspondence, Phys. Lett. B 465 (1999) 142 [hep-th/9907166] [SPIRES].ADSMathSciNetGoogle Scholar
  5. [5]
    J.M. Maldacena and J.G. Russo, Large-N limit of non-commutative gauge theories, JHEP 09 (1999) 025 [hep-th/9908134] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    R.N. Caldeira Costa and M. Taylor, Holography for chiral scale-invariant models, JHEP 02 (2011) 082 [arXiv:1010.4800] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES].ADSMathSciNetGoogle Scholar
  9. [9]
    G. Compere, W. Song and A. Virmani, Microscopics of Extremal Kerr from Spinning M5 Branes, arXiv:1010.0685 [SPIRES].
  10. [10]
    M. Guica and A. Strominger, Microscopic Realization of the Kerr/CFT Correspondence, JHEP 02 (2011) 010 [arXiv:1009.5039] [SPIRES].ADSMathSciNetGoogle Scholar
  11. [11]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217] [SPIRES].ADSMathSciNetGoogle Scholar
  13. [13]
    E.T. Akhmedov, Notes on multi-trace operators and holographic renormalization group, hep-th/0202055 [SPIRES].
  14. [14]
    I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [SPIRES].
  16. [16]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [SPIRES].CrossRefGoogle Scholar
  17. [17]
    J. de Boer, The holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [hep-th/0101026] [SPIRES].CrossRefMATHADSGoogle Scholar
  18. [18]
    D. Martelli and W. Mueck, Holographic renormalization and Ward identities with the Hamilton-Jacobi method, Nucl. Phys. B 654 (2003) 248 [hep-th/0205061] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    B.C. van Rees, Irrelevant deformations and the holographic Callan-Symanzik equation, [arXiv:1105.5396] [SPIRES].
  20. [20]
    M. Berkooz, A. Sever and A. Shomer, Double-trace deformations, boundary conditions and spacetime singularities, JHEP 05 (2002) 034 [hep-th/0112264] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [SPIRES].
  22. [22]
    W. Mueck, An improved correspondence formula for AdS/CFT with multi-trace operators, Phys. Lett. B 531 (2002) 301 [hep-th/0201100] [SPIRES].ADSGoogle Scholar
  23. [23]
    A. Sever and A. Shomer, A note on multi-trace deformations and AdS/CFT, JHEP 07 (2002) 027 [hep-th/0203168] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    S. Elitzur, A. Giveon, M. Porrati and E. Rabinovici, Multitrace deformations of vector and adjoint theories and their holographic duals, JHEP 02 (2006) 006 [hep-th/0511061] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    I. Papadimitriou, Holographic renormalization as a canonical transformation, JHEP 11 (2010) 014 [arXiv:1007.4592] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    K. Skenderis, M. Taylor and B.C. van Rees, AdS boundary conditions and the Topologically Massive Gravity/ CFT correspondence, arXiv:0909.5617 [SPIRES].
  29. [29]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].CrossRefMATHADSGoogle Scholar
  30. [30]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic Renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [SPIRES].ADSMathSciNetGoogle Scholar
  32. [32]
    I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  34. [34]
    E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/ CFT correspondence, hep-th/0201253 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsState University of New YorkStony BrookU.S.A.

Personalised recommendations