Advertisement

Anomalous tqγ coupling effects in exclusive radiative B-meson decays

  • Xin-Qiang Li
  • Ya-Dong Yang
  • Xing-Bo Yuan
Article

Abstract

The top-quark FCNC processes will be searched for at the CERN LHC, which are correlated with the B-meson decays. In this paper, we study the effects of top-quark anomalous interactions tqγ in the exclusive radiative B → K γ and B → ργ decays. With the current experimental data of the branching ratios, the direct CP and the isospin asymmetries, bounds on the coupling κγ tcR from B → K γ and κγ tcR from B → ργ decays are derived, respectively. The bound on |κγ tcR | from \( \mathcal{B}\left( {B \to {K^*}\gamma } \right) \) is generally compatible with that from \( \mathcal{B}\left( {B \to {K_s}\gamma } \right) \). However, the isospin asymmetry ∆(K γ) further restrict the phase of κγ tcR , and the combined bound results in the upper limit, \( \mathcal{B}\left( {t \to c\gamma } \right) \)< 0.21%, which is lower than the CDF result. For real κγ tcR , the upper bound on \( \mathcal{B}\left( {t \to c\gamma } \right) \) is about of the same order as the 5σ discovery potential of ATLAS with an integrated luminosity of10 fb−1. For B → ργ decays, the NP contribution is enhanced by a large CKM factor |V ud /V td |, and the constraint on tuγ coupling is rather restrictive, \( \mathcal{B}\left( {t \to u\gamma } \right) \)< 1.44× 10−5. With refined measurements to be available at the LHCb and the future super-B factories, we can get close correlations between B →  and the rare t →  decays, which will be studied directly at the LHC ATLAS and CMS.

Keywords

Beyond Standard Model B-Physics 

References

  1. [1]
    S.L. Glashow, J. Iliopoulos and L. Maiani, Weak interactions with lepton-hadron symmetry, Phys. Rev. D2 (1970) 1285 [SPIRES].ADSGoogle Scholar
  2. [2]
    G. Eilam, J.L. Hewett and A. Soni, Rare decays of the top quark in the standard and two Higgs doublet models, Phys. Rev. D 44 (1991) 1473 [Erratum ibid. D 59 (1999) 039901] [SPIRES].ADSGoogle Scholar
  3. [3]
    J.L. Diaz-Cruz, R. Martinez, M.A. Perez and A. Rosado, Flavor changing radiative decay of thf t quark, Phys. Rev. D 41 (1990) 891 [SPIRES].ADSGoogle Scholar
  4. [4]
    M. Beneke et al., Top quark physics, hep-ph/0003033 [SPIRES].
  5. [5]
    W. Bernreuther, Top quark physics at the LHC, J. Phys. G 35 (2008) 083001 [arXiv:0805.1333] [SPIRES].ADSGoogle Scholar
  6. [6]
    CDF collaboration, F. Abe et al., Search for flavor changing neutral current decays of the top quark in \( p\overline p \) collisions at \( \sqrt {s} = 1.8 \) TeV, Phys. Rev. Lett. 80 (1998) 2525 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    ZEUS collaboration, S. Chekanov et al., Search for single-top production in ep collisions at HERA, Phys. Lett. B 559 (2003) 153 [hep-ex/0302010] [SPIRES].ADSGoogle Scholar
  8. [8]
    ATLAS collaboration, J. Carvalho et al., Study of ATLAS sensitivity to FCNC top decays, Eur. Phys. J. C 52 (2007) 999 [arXiv:0712.1127] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    F.M.A. Veloso, Study of ATLAS sensitivity to FCNC top quark decays, Ph.D. thesis, Coibra University, Coimbra, Portugal (2008), CERN-THESIS-2008-106.Google Scholar
  10. [10]
    L. Benucci and A. Kyriakis, CMS sensitivity to top flavour changing neutral currents, Nucl. Phys. Proc. Suppl. 177 (2008) 258. CrossRefADSGoogle Scholar
  11. [11]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  12. [12]
    T. Han, R.D. Peccei and X. Zhang, Top quark decay via flavor changing neutral currents at hadron colliders, Nucl. Phys. B 454 (1995) 527 [hep-ph/9506461] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    T. Han, K. Whisnant, B.L. Young and X. Zhang, Top quark decay via the anomalous coupling \( \overline t c\gamma \) at hadron colliders, Phys. Rev. D 55 (1997) 7241 [hep-ph/9603247] [SPIRES].ADSGoogle Scholar
  14. [14]
    T. Han, K. Whisnant, B.L. Young and X. Zhang, Searching for tcg at the Fermilab Tevatron, Phys. Lett. B 385 (1996) 311 [hep-ph/9606231] [SPIRES].ADSGoogle Scholar
  15. [15]
    F. Larios, M.A. Perez and C.P. Yuan, Analysis of tbW and ttZ couplings from CLEO and LEP/SLC data, Phys. Lett. B 457 (1999) 334 [hep-ph/9903394] [SPIRES].ADSGoogle Scholar
  16. [16]
    G. Burdman, M.C. Gonzalez-Garcia and S.F. Novaes, Anomalous couplings of the third generation in rare B decays, Phys. Rev. D 61 (2000) 114016 [hep-ph/9906329] [SPIRES].ADSGoogle Scholar
  17. [17]
    J.P. Lee and K.Y. Lee, Implications of the anomalous top quark couplings in \( {B_s} - {\overline B_s} \) mixing, B → X s γ and top quark decays, Phys. Rev. D 78 (2008) 056004 [arXiv:0806.1389] [SPIRES].ADSGoogle Scholar
  18. [18]
    K.Y. Lee, CP violation in Bργ decay with anomalous right-handed top quark couplings, Phys. Lett. B 632 (2006) 99 [SPIRES].ADSGoogle Scholar
  19. [19]
    P.J. Fox, Z. Ligeti, M. Papucci, G. Perez and M.D. Schwartz, Deciphering top flavor violation at the LHC with B factories, Phys. Rev. D 78 (2008) 054008 [arXiv:0704.1482] [SPIRES].ADSGoogle Scholar
  20. [20]
    B. Grzadkowski and M. Misiak, Anomalous Wtb coupling effects in the weak radiative B-meson decay, Phys. rev. D 78 (2008) 077501 [arXiv:0802.1413] [SPIRES].ADSGoogle Scholar
  21. [21]
    X. Yuan, Y. Hao and Y. Yang, B → X s γ constraints on the top quark anomalous t → cγ coupling, Phys. Rev. D 83 (2011) 013004 [arXiv:1010.1912] [SPIRES].ADSGoogle Scholar
  22. [22]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [SPIRES].
  23. [23]
    T. Hurth and M. Nakao, Radiative and electroweak penguin decays of B mesons, Ann. Rev. Nucl. Part. Sci. 60 (2010) 645 [arXiv:1005.1224] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    Y.Y. Keum, M. Matsumori and A.I. Sanda, CP asymmetry, branching ratios and isospin breaking effects of BK γ with perturbative QCD approach, Phys. Rev. D 72 (2005) 014013 [hep-ph/0406055] [SPIRES].ADSGoogle Scholar
  25. [25]
    C.-D. Lu, M. Matsumori, A.I. Sanda and M.-Z. Yang, CP asymmetry, branching ratios and isospin breaking effects in Bργ and Bωγ decays with the pQCD approach, Phys. Rev. D 72 (2005) 094005 [hep-ph/0508300] [SPIRES].ADSGoogle Scholar
  26. [26]
    M. Matsumori and A.I. Sanda, The mixing-induced CP asymmetry in BK γ decays with perturbative QCD approach, Phys. Rev. D 73 (2006) 114022 [hep-ph/0512175] [SPIRES].ADSGoogle Scholar
  27. [27]
    W. Wang, R.-H. Li and C.-D. Lu, Radiative charmless B s → Vγ and B s → Aγ decays in pQCD approach, arXiv:0711.0432 [SPIRES].
  28. [28]
    A. Ali, B.D. Pecjak and C. Greub, B → Vγ decays at NNLO in SCET , Eur. Phys. J. C 55 (2008) 577 [arXiv:0709.4422] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    C. Kim, A.K. Leibovich and T. Mehen, Nonperturbative charming penguin contributions to isospin asymmetries in radiative B decays, Phys. Rev. D 78 (2008) 054024 [arXiv:0805.1735] [SPIRES].ADSGoogle Scholar
  30. [30]
    T. Becher, R.J. Hill and M. Neubert, Factorization in BVγ decays, Phys. Rev. D 72 (2005) 094017 [hep-ph/0503263] [SPIRES].ADSGoogle Scholar
  31. [31]
    J.-g. Chay and C. Kim, Rare radiative exclusive B decays in soft-collinear effective theory, Phys. Rev. D 68 (2003) 034013 [hep-ph/0305033] [SPIRES].ADSGoogle Scholar
  32. [32]
    P. Ball, G.W. Jones and R. Zwicky, BVγ beyond QCD factorisation, Phys. Rev. D 75 (2007) 054004 [hep-ph/0612081] [SPIRES].ADSGoogle Scholar
  33. [33]
    P. Ball and R. Zwicky, |V td /V ts| from B, JHEP 04 (2006) 046 [hep-ph/0603232] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    P. Ball and R. Zwicky, Time-dependent CP asymmetry in BK γ as a (quasi) null test of the standard model, Phys. Lett. B 642 (2006) 478 [hep-ph/0609037] [SPIRES].ADSGoogle Scholar
  35. [35]
    F. Muheim, Y. Xie and R. Zwicky, Exploiting the width difference in B s → φγ, Phys. Lett. B 664 (2008) 174 [arXiv:0802.0876] [SPIRES].ADSGoogle Scholar
  36. [36]
    A. Khodjamirian, T. Mannel, A.A. Pivovarov and Y.M. Wang, Charm-loop effect in B → K (∗)+ and B → K γ, JHEP 09 (2010) 089 [arXiv:1006.4945] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive BV+ Vγ decays, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    M. Beneke, T. Feldmann and D. Seidel, Exclusive radiative and electroweak bd and bs penguin decays at NLO, Eur. Phys. J. C 41 (2005) 173 [hep-ph/0412400] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    S.W. Bosch and G. Buchalla, The radiative decays BV γ at next-to-leading order in QCD, Nucl. Phys. B 621 (2002) 459 [hep-ph/0106081] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    S.W. Bosch, Exclusive radiative decays of B mesons in QCD factorization, hep-ph/0208203 [SPIRES].
  41. [41]
    A. Ali and A.Y. Parkhomenko, Branching ratios for BK γ and Bργ decays in next-to-leading order in α s including hard spectator corrections, Eur. Phys. J. C 23 (2002) 89 [hep-ph/0105302] [SPIRES].ADSGoogle Scholar
  42. [42]
    A. Ali, E. Lunghi and A.Y. Parkhomenko, Implication of the B → (ρ, ω)γ branching ratios for the CKM phenomenology, Phys. Lett. B 595 (2004) 323 [hep-ph/0405075] [SPIRES].ADSGoogle Scholar
  43. [43]
    A.L. Kagan and M. Neubert, Isospin breaking in BK γ decays, Phys. Lett. B 539 (2002) 227 [hep-ph/0110078] [SPIRES].ADSGoogle Scholar
  44. [44]
    F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [SPIRES].ADSGoogle Scholar
  45. [45]
    M.R. Ahmady and F. Mahmoudi, Constraints on the mSUGRA parameter space from NLO calculation of isospin asymmetry in BK γ, Phys. Rev. D 75 (2007) 015007 [hep-ph/0608212] [SPIRES].ADSGoogle Scholar
  46. [46]
    M.R. Ahmady and F. Chishtie, Isospin symmetry breaking in BK γ decay due to an extra generation of vector quarks, Int. J. Mod. Phys. A 20 (2005) 6229 [hep-ph/0508105] [SPIRES].ADSGoogle Scholar
  47. [47]
    Z.-j. Xiao and C. Zhuang, Exclusive B → (K )γ decays in the general two-Higgs-doublet models, Eur. Phys. J. C 33 (2004) 349 [hep-ph/0310097] [SPIRES].ADSGoogle Scholar
  48. [48]
    T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [SPIRES].ADSGoogle Scholar
  49. [49]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    J.A. Aguilar-Saavedra, A minimal set of top anomalous couplings, Nucl. Phys. B 812 (2009) 181 [arXiv:0811.3842] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    W. Hollik, J.I. Illana, S. Rigolin, C. Schappacher and D. Stöckinger, Top dipole form factors and loop-induced CP-violation in supersymmetry, Nucl. Phys. B 551 (1999) 3 [hep-ph/9812298] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    J.J. Zhang et al., Next-to-leading order QCD corrections to the top quark decay via model-independent FCNC couplings, Phys. Rev. Lett. 102 (2009) 072001 [arXiv:0810.3889] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    J.J. Zhang et al., Next-to-leading order QCD corrections to the top quark decay via the flavor-changing neutral-current operators with mixing effects, Phys. Rev. D 82 (2010) 073005 [arXiv:1004.0898] [SPIRES].ADSGoogle Scholar
  55. [55]
    Y. Zhang, B.H. Li, C.S. Li, J. Gao and H.X. Zhu, Next-to-leading order QCD corrections to the top quark associated with γ production via model-independent flavor-changing neutral-current couplings at hadron colliders, Phys. Rev. D 83 (2011) 094003 [arXiv:1101.5346] [SPIRES].ADSGoogle Scholar
  56. [56]
    J. Drobnak, S. Fajfer and J.F. Kamenik, Flavor changing neutral coupling mediated radiative top quark decays at next-to-leading order in QCD, Phys. Rev. Lett. 104 (2010) 252001 [arXiv:1004.0620] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    J. Drobnak, S. Fajfer and J.F. Kamenik, QCD corrections to flavor changing neutral coupling mediated rare top quark decays, Phys. Rev. D 82 (2010) 073016 [arXiv:1007.2551] [SPIRES].ADSGoogle Scholar
  58. [58]
    N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    K.G. Chetyrkin, M. Misiak and M. Münz, Weak radiative B-meson decay beyond leading logarithms, Phys. Lett. B 400 (1997) 206 [hep-ph/9612313] [SPIRES].ADSGoogle Scholar
  61. [61]
    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    A.J. Buras, Weak hamiltonian, CP-violation and rare decays, hep-ph/9806471 [SPIRES].
  63. [63]
    M. Misiak and M. Steinhauser, Three-loop matching of the dipole operators for bsγ and bsg, Nucl. Phys. B 683 (2004) 277 [hep-ph/0401041] [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    M. Gorbahn and U. Haisch, Effective hamiltonian for non-leptonic |∆(F)| =1 decays at NNLO in QCD, Nucl. Phys. B 713 (2005) 291 [hep-ph/0411071] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    M. Gorbahn, U. Haisch and M. Misiak, Three-loop mixing of dipole operators, Phys. Rev. Lett. 95 (2005) 102004 [hep-ph/0504194] [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    M. Czakon, U. Haisch and M. Misiak, Four-loop anomalous dimensions for radiative flavour-changing decays, JHEP 03 (2007) 008 [hep-ph/0612329] [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    T. Feldmann and J. Matias, Forward-backward and isospin asymmetry for BK +- decay in the standard model and in supersymmetry, JHEP 01 (2003) 074 [hep-ph/0212158] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    C.S. Li, R.J. Oakes and T.C. Yuan, QCD corrections to tW + b, Phys. Rev. D 43 (1991) 3759 [SPIRES].ADSGoogle Scholar
  69. [69]
    CDF and D0 collaboration and others, Combination of CDF and D0 results on the mass of the top quark, arXiv:1007.3178 [SPIRES].
  70. [70]
    L. Wolfenstein, Parametrization of the Kobayashi-Maskawa matrix, Phys. Rev. Lett. 51 (1983) 1945 [SPIRES].CrossRefADSGoogle Scholar
  71. [71]
    CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [SPIRES].CrossRefADSGoogle Scholar
  72. [72]
    C.T.H. Davies et al., Precise charm to strange mass ratio and light quark masses from full lattice QCD, Phys. Rev. Lett. 104 (2010) 132003 [arXiv:0910.3102] [SPIRES].CrossRefADSGoogle Scholar
  73. [73]
    C. McNeile, C.T.H. Davies, E. Follana, K. Hornbostel and G.P. Lepage, High-precision c and b masses and QCD coupling from current-current correlators in lattice and continuum QCD, Phys. Rev. D 82 (2010) 034512 [arXiv:1004.4285] [SPIRES].ADSGoogle Scholar
  74. [74]
    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [SPIRES].CrossRefMATHADSGoogle Scholar
  75. [75]
    M. Beneke, A quark mass definition adequate for threshold problems, Phys. Lett. B 434 (1998) 115 [hep-ph/9804241] [SPIRES].ADSGoogle Scholar
  76. [76]
    M. Beneke and A. Signer, The bottom \( \overline {\text{M}} {\text{S}} \) quark mass from sum rules at next-to-next-to-leading order, Phys. Lett. B 471 (1999) 233 [hep-ph/9906475] [SPIRES].ADSGoogle Scholar
  77. [77]
    J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsHenan Normal UniversityXinxiangP.R. China
  2. 2.IFICUniversitat de València-CSICValènciaSpain
  3. 3.Institute of Particle PhysicsHuazhong Normal UniversityWuhanP.R. China
  4. 4.Key Laboratory of Quark & Lepton Physics, Ministry of EducationHuazhong Normal UniversityWuhanP.R. China

Personalised recommendations