Advertisement

The s →  decay in and beyond the Standard Model

  • Philippe Mertens
  • Christopher Smith
Open Access
Article

Abstract

The New Physics sensitivity of the s →  transition and its accessibility through hadronic processes are thoroughly investigated. Firstly, the Standard Model predictions for the direct CP-violating observables in radiative K decays are systematically improved. Besides, the magnetic contribution to ε′ is estimated and found subleading, even in the presence of New Physics, and a new strategy to resolve the ε′ electroweak versus QCD penguin fraction is identified. Secondly, the signatures of a series of New Physics scenarios, characterized as model-independently as possible in terms of their underlying dynamics, are investigated by combining the information from all the FCNC transitions in the s → d sector.

Keywords

Beyond Standard Model CP violation Chiral Lagrangians Kaon Physics 

References

  1. [1]
    M. Misiak et al., The first estimate of \( B\left( {\bar{B} \to {X_s}\gamma } \right) \) at O(α s 2 ), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [SPIRES].ADSGoogle Scholar
  2. [2]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and tau-lepton Properties, arXiv:1010.1589 [SPIRES].
  3. [3]
    J. Hisano, M. Nagai, P. Paradisi and Y. Shimizu, Waiting for μ → eγ from the MEG experiment, JHEP 12 (2009) 030 [arXiv:0904.2080] [SPIRES].ADSGoogle Scholar
  4. [4]
    MEG collaboration, J. Adam et al., A limit for the μ → eγ decay from the MEG experiment, Nucl. Phys. B 834 (2010) 1 [arXiv:0908.2594] [SPIRES].ADSGoogle Scholar
  5. [5]
    NA48/2 collaboration, J.R. Batley et al., Measurement of the direct emission and interference terms and search for CP-violation in the decay K ± → π ± π 0 γ, Eur. Phys. J. C 68 (2010) 75 [arXiv:1004.0494] [SPIRES].ADSGoogle Scholar
  6. [6]
    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [SPIRES].ADSGoogle Scholar
  7. [7]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, On the Weak Radiative Decays (Effects of Strong Interactions at Short Distances), Phys. Rev. D 18 (1978) 2583 [Erratum ibid D 19 (1979) 2815] [SPIRES].ADSGoogle Scholar
  8. [8]
    S. Bertolini, F. Borzumati and A. Masiero, QCD Enhancement of Radiative b Decays, Phys. Rev. Lett. 59 (1987) 180 [SPIRES].ADSGoogle Scholar
  9. [9]
    N.G. Deshpande, P. Lo, J. Trampetic, G. Eilam and P. Singer, B → Kγ and the Top Quark Mass, Phys. Rev. Lett. 59 (1987) 183 [SPIRES].ADSGoogle Scholar
  10. [10]
    G. D’Ambrosio, G. Ecker, G. Isidori and J. Portoles, The decays K → πℓ + beyond leading order in the chiral expansion, JHEP 08 (1998) 004 [hep-ph/9808289] [SPIRES].Google Scholar
  11. [11]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [SPIRES].ADSGoogle Scholar
  12. [12]
    G. D’Ambrosio and G. Isidori, CP violation in kaon decays, Int. J. Mod. Phys. A 13 (1998) 1 [hep-ph/9611284] [SPIRES].ADSGoogle Scholar
  13. [13]
    M. Ademollo and R. Gatto, Nonrenormalization Theorem for the Strangeness Violating Vector Currents, Phys. Rev. Lett. 13 (1964) 264 [SPIRES].ADSGoogle Scholar
  14. [14]
    F. Mescia and C. Smith, Improved estimates of rare K decay matrix-elements from K(l3) decays, Phys. Rev. D 76 (2007) 034017 [arXiv:0705.2025] [SPIRES].ADSGoogle Scholar
  15. [15]
    G. Colangelo, G. Isidori and J. Portoles, Supersymmetric contributions to direct CP-violation in K → ππγ decays, Phys. Lett. B 470 (1999) 134 [hep-ph/9908415] [SPIRES].ADSGoogle Scholar
  16. [16]
    D.-N. Gao, Charge asymmetry in K ± → π ± γγ induced by the electromagnetic penguin operators, Phys. Rev. D 67 (2003) 074028 [hep-ph/0212280] [SPIRES].ADSGoogle Scholar
  17. [17]
    SPQCDR collaboration, D. Becirevic, V. Lubicz, G. Martinelli and F. Mescia, First lattice calculation of the electromagnetic operator amplitude \( \left\langle {{\pi^0}\left| {Q_\gamma^{+} } \right|{K^0}} \right\rangle \), Phys. Lett. B 501 (2001) 98 [hep-ph/0010349] [SPIRES].ADSGoogle Scholar
  18. [18]
    V. Mateu and J. Portoles, Form Factors in radiative pion decay, Eur. Phys. J. C 52 (2007) 325 [arXiv:0706.1039] [SPIRES].ADSGoogle Scholar
  19. [19]
    P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya and M.I. Polikarpov, Lattice QCD in strong magnetic fields, arXiv:0909.1808 [SPIRES].
  20. [20]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  21. [21]
    G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [SPIRES].ADSGoogle Scholar
  22. [22]
    J.A. Cronin, Phenomenological model of strong and weak interactions in chiral U(3) × U(3), Phys. Rev. 161 (1967) 1483 [SPIRES].ADSGoogle Scholar
  23. [23]
    B. Grinstein, S.-J. Rey and M.B. Wise, CP violation in charged-kaon decay, Phys. Rev. D 33 (1986) 1495 [SPIRES].ADSGoogle Scholar
  24. [24]
    G. Ecker, A. Pich and E. de Rafael, Radiative Kaon Decays and CP-violation in Chiral Perturbation Theory, Nucl. Phys. B 303 (1988) 665 [SPIRES].ADSGoogle Scholar
  25. [25]
    G. D’Ambrosio, G. Ecker, G. Isidori and H. Neufeld, Radiative Four-Meson Amplitudes in Chiral Perturbation Theory, Phys. Lett. B 380 (1996) 165 [hep-ph/9603345] [SPIRES].ADSGoogle Scholar
  26. [26]
    G. D’Ambrosio, G. Ecker, G. Isidori and H. Neufeld, K → πππγ in chiral perturbation theory, Z. Phys. C 76 (1997) 301 [hep-ph/9612412] [SPIRES].Google Scholar
  27. [27]
    F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [SPIRES].MATHADSGoogle Scholar
  28. [28]
    J. Kambor, J.H. Missimer and D. Wyler, The Chiral Loop Expansion of the Nonleptonic Weak Interactions of Mesons, Nucl. Phys. B 346 (1990) 17 [SPIRES].ADSGoogle Scholar
  29. [29]
    G. Ecker, J. Kambor and D. Wyler, Resonances in the weak chiral Lagrangian, Nucl. Phys. B 394 (1993) 101 [SPIRES].ADSGoogle Scholar
  30. [30]
    G. Ecker, J. Gasser, A. Pich and E. de Rafael, The Role of Resonances in Chiral Perturbation Theory, Nucl. Phys. B 321 (1989) 311 [SPIRES].ADSGoogle Scholar
  31. [31]
    W.A. Bardeen, A.J. Buras and J.M. Gérard, A Consistent Analysis of theI = 1/2 Rule for K Decays, Phys. Lett. B 192 (1987) 138 [SPIRES].ADSGoogle Scholar
  32. [32]
    J.M. Gérard, Electroweak interactions of hadrons, Acta Phys. Polon. B 21 (1990) 257 [SPIRES].Google Scholar
  33. [33]
    G. Esposito-Farese, Right invariant metrics on SU(3) and one loop divergences in chiral perturbation theory, Z. Phys. C 50 (1991) 255 [SPIRES].Google Scholar
  34. [34]
    G. Ecker, G. Isidori, G. Muller, H. Neufeld and A. Pich, Electromagnetism in nonleptonic weak interactions, Nucl. Phys. B 591 (2000) 419 [hep-ph/0006172] [SPIRES].ADSGoogle Scholar
  35. [35]
    G. Isidori, F. Mescia and C. Smith, Light-quark loops in K → πνν, Nucl. Phys. B 718 (2005) 319 [hep-ph/0503107] [SPIRES].ADSGoogle Scholar
  36. [36]
    J. Bijnens, G. Ecker and A. Pich, The Chiral anomaly in nonleptonic weak interactions, Phys. Lett. B 286 (1992) 341 [hep-ph/9205210] [SPIRES].ADSGoogle Scholar
  37. [37]
    G. D’Ambrosio and J. Portoles, Analysis of K L → π + π γ in chiral perturbation theory, Nucl. Phys. B 533 (1998) 523 [hep-ph/9711210] [SPIRES].ADSGoogle Scholar
  38. [38]
    G. D’Ambrosio and D.-N. Gao, A phenomenological description on K → ππγ magnetic transitions, JHEP 10 (2000) 043 [hep-ph/0010122] [SPIRES].Google Scholar
  39. [39]
    C. Bruno and J. Prades, Rare Kaon Decays in the 1/N c -Expansion, Z. Phys. C 57 (1993) 585 [hep-ph/9209231] [SPIRES].ADSGoogle Scholar
  40. [40]
    L.M. Sehgal and M. Wanninger, CP violation in the decay K L → π + π e + e , Phys. Rev. D 46 (1992) 1035 [Erratum ibid D 46 (1992) 5209] [SPIRES].ADSGoogle Scholar
  41. [41]
    P. Heiliger and L.M. Sehgal, Direct and indirect CP-violation in the decay K L → π + π e + e , Phys. Rev. D 48 (1993) 4146 [Erratum ibid D 60 (1999) 079902] [SPIRES].ADSGoogle Scholar
  42. [42]
    J.K. Elwood, M.B. Wise and M.J. Savage, K L → π + π e + e , Phys. Rev. D 52 (1995) 5095 [Erratum ibid D 53 (1996) 2855] [hep-ph/9504288] [SPIRES].ADSGoogle Scholar
  43. [43]
    G. Ecker and H. Pichl, The CP-violating asymmetry in K L → π + π e + e , Phys. Lett. B 507 (2001) 193 [hep-ph/0101097] [SPIRES].ADSGoogle Scholar
  44. [44]
    F. Mescia, C. Smith and S. Trine, K L → π 0 e + e and K L → π 0 μ + μ : A binary star on the stage of flavor physics, JHEP 08 (2006) 088 [hep-ph/0606081] [SPIRES].ADSGoogle Scholar
  45. [45]
    G. Buchalla, G. D’Ambrosio and G. Isidori, Extracting short-distance physics from K L,S → π 0 e + e decays, Nucl. Phys. B 672 (2003) 387 [hep-ph/0308008] [SPIRES].ADSGoogle Scholar
  46. [46]
    G. Isidori, C. Smith and R. Unterdorfer, The rare decay K L → π 0 μ + μ within the SM, Eur. Phys. J. C 36 (2004) 57 [hep-ph/0404127] [SPIRES].ADSGoogle Scholar
  47. [47]
    D.-N. Gao, Long-distance contribution to the forward-backward asymmetry in decays K + → π + + , Phys. Rev. D 69 (2004) 094030 [hep-ph/0311253] [SPIRES].ADSGoogle Scholar
  48. [48]
    P. Singer, The s → dγ transition in kaon and hyperon decays, hep-ph/9607429 [SPIRES].
  49. [49]
    G. Eilam, A. Ioannisian, R.R. Mendel and P. Singer, Long distance contribution to s → dγ and implications for Ω → Ξ γ, B s → B d γ and b → , Phys. Rev. D 53 (1996) 3629 [hep-ph/9507267] [SPIRES].ADSGoogle Scholar
  50. [50]
    S. Fajfer, S. Prelovsek and P. Singer, FCNC transitions c → uγ and s → dγ in B c → B uγ and B s → B dγ decays, Phys. Rev. D 59 (1999) 114003 [hep-ph/9901252] [SPIRES].ADSGoogle Scholar
  51. [51]
    G. Ecker, H. Neufeld and A. Pich, Nonleptonic kaon decays and the chiral anomaly, Nucl. Phys. B 413 (1994) 321 [hep-ph/9307285] [SPIRES].ADSGoogle Scholar
  52. [52]
    G. D’Ambrosio, M. Miragliuolo and F. Sannino, K S → π + π γ: A Laboratory for meson dynamics, Z. Phys. C 59 (1993) 451 [SPIRES].ADSGoogle Scholar
  53. [53]
    G. D’Ambrosio and G. Isidori, K → ππγ decays: A Search for novel couplings in kaon decays, Z. Phys. C 65 (1995) 649 [hep-ph/9408219] [SPIRES].ADSGoogle Scholar
  54. [54]
    J.D. Good, Pion Spectrum in Radiative K π + Decay, Phys. Rev. 113 (1959) 352 [SPIRES].ADSGoogle Scholar
  55. [55]
    N. Christ, Possible CP-violation in K ± → π ± π 0 γ, Phys. Rev. 159 (1967) 1292 [SPIRES].ADSGoogle Scholar
  56. [56]
    L. Cappiello and G. D’Ambrosio, Form factor in K + → π + π 0 γ: interference versus direct emission, Phys. Rev. D 75 (2007) 094014 [hep-ph/0702292] [SPIRES].ADSGoogle Scholar
  57. [57]
    B. Ananthanarayan, G. Colangelo, J. Gasser and H. Leutwyler, Roy equation analysis of ππ scattering, Phys. Rept. 353 (2001) 207 [hep-ph/0005297] [SPIRES].MATHADSGoogle Scholar
  58. [58]
    C.O. Dib and R.D. Peccei, CP asymmetry in K ± → π ± π 0, Phys. Lett. B 249 (1990) 325 [SPIRES].ADSGoogle Scholar
  59. [59]
    A.J. Buras and J.-M. Gérard, What is the (ϵ′/ϵ)(exp) telling us?, Phys. Lett. B 517 (2001) 129 [hep-ph/0106104] [SPIRES].ADSGoogle Scholar
  60. [60]
    A.J. Buras and D. Guadagnoli, Correlations among new CP-violating effects inF = 2 observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887] [SPIRES].ADSGoogle Scholar
  61. [61]
    A.J. Buras and M. Jamin, ϵ′/ϵ at the NLO: 10 years later, JHEP 01 (2004) 048 [hep-ph/0306217] [SPIRES].ADSGoogle Scholar
  62. [62]
    J. Tandean and G. Valencia, Reanalysis of CP-violation in K L → π + π γ, Phys. Rev. D 62 (2000) 116007 [hep-ph/0008238] [SPIRES].ADSGoogle Scholar
  63. [63]
    J.N. Matthews et al., New measurement of the CP-violation parameter η +−γ, Phys. Rev. Lett. 75 (1995) 2803 [SPIRES].ADSGoogle Scholar
  64. [64]
    L.M. Sehgal and L. Wolfenstein, CP-violating interfrence effects in radiative K 0 decays, Phys. Rev. 162 (1967) 1362 [SPIRES].ADSGoogle Scholar
  65. [65]
    B.R. Martin and E. De Rafael, Phenomenological description of k S → 2γ and k L → 2γ decays, Nucl. Phys. B 8 (1968) 131 [SPIRES].ADSGoogle Scholar
  66. [66]
    R. Decker, P. Pavlopoulos and G. Zoupanos, CP violation in \( {K^0}\left( {{{\bar{K}}^0}} \right) \to 2\gamma \) decay, Z. Phys. C 28 (1985) 117 [SPIRES].ADSGoogle Scholar
  67. [67]
    F. Buccella, G. D’Ambrosio and M. Miragliuolo, CP violation in the decays of neutral kaons into two photons, Nuovo Cim. A 104 (1991) 777 [SPIRES].ADSGoogle Scholar
  68. [68]
    J.-M. Gérard, C. Smith and S. Trine, Radiative kaon decays and the penguin contribution to theI = 1/2 rule, Nucl. Phys. B 730 (2005) 1 [hep-ph/0508189] [SPIRES].ADSGoogle Scholar
  69. [69]
    T.T. Wu and C.-N. Yang, Phenomenological Analysis of Violation of CP Invariance in Decay of K 0 and \( {\bar{K}^0} \), Phys. Rev. Lett. 13 (1964) 380 [SPIRES].ADSGoogle Scholar
  70. [70]
    A.J. Buras, D. Guadagnoli and G. Isidori, On ϵ K beyond lowest order in the Operator Product Expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612] [SPIRES].ADSGoogle Scholar
  71. [71]
    J. Brod, M. Gorbahn and E. Stamou, Two-Loop Electroweak Corrections for the \( K \to \pi \nu \bar{\nu } \) Decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [SPIRES].ADSGoogle Scholar
  72. [72]
    A.J. Buras, M. Gorbahn, U. Haisch and U. Nierste, The rare decay \( {K^{+} } \to {\pi^{+} }\nu \bar{\nu } \) at the next-to-next-to-leading order in QCD, Phys. Rev. Lett. 95 (2005) 261805 [hep-ph/0508165] [SPIRES].ADSGoogle Scholar
  73. [73]
    A.J. Buras, M. Gorbahn, U. Haisch and U. Nierste, Charm quark contribution to \( {K^{+} } \to {\pi^{+} }\nu \bar{\nu } \) at next-to-next-to-leading order, JHEP 11 (2006) 002 [hep-ph/0603079] [SPIRES].ADSGoogle Scholar
  74. [74]
    J. Brod and M. Gorbahn, Electroweak Corrections to the Charm Quark Contribution to \( {K^{+} } \to {\pi^{+} }\nu \bar{\nu } \) , Phys. Rev. D 78 (2008) 034006 [arXiv:0805.4119] [SPIRES].ADSGoogle Scholar
  75. [75]
    CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [SPIRES], updated results and plots available at: http://ckmfitter.in2p3.fr.ADSGoogle Scholar
  76. [76]
    E787 collaboration, S.S. Adler et al., Further Evidence for the Decay \( {K^{+} } \to {\pi^{+} }\nu \bar{\nu } \) , Phys. Rev. Lett. 88 (2002) 041803 [hep-ex/0111091] [SPIRES].ADSGoogle Scholar
  77. [77]
    E949 collaboration, A.V. Artamonov et al., New measurement of the \( {K^{+} } \to {\pi^{+} }\nu \bar{\nu } \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [SPIRES].ADSGoogle Scholar
  78. [78]
    E391a collaboration, J.K. Ahn et al., Experimental study of the decay \( K_L^0 \to {\pi^0}\nu \bar{\nu } \), Phys. Rev. D 81 (2010) 072004 [arXiv:0911.4789] [SPIRES].ADSGoogle Scholar
  79. [79]
    KTeV collaboration, A. Alavi-Harati et al., Search for the Rare Decay K L → π 0 ee, Phys. Rev. Lett. 93 (2004) 021805 [hep-ex/0309072] [SPIRES].ADSGoogle Scholar
  80. [80]
    KTeV collaboration, A. Alavi-Harati et al., Search for the decay K L → π 0 μ + μ , Phys. Rev. Lett. 84 (2000) 5279 [hep-ex/0001006] [SPIRES].ADSGoogle Scholar
  81. [81]
    A.J. Buras, G. Colangelo, G. Isidori, A. Romanino and L. Silvestrini, Connections between ϵ′/ϵ and rare kaon decays in supersymmetry, Nucl. Phys. B 566 (2000) 3 [hep-ph/9908371] [SPIRES].Google Scholar
  82. [82]
    V. Cirigliano, G. Ecker, H. Neufeld and A. Pich, Isospin breaking in K → ππ decays, Eur. Phys. J. C 33 (2004) 369 [hep-ph/0310351] [SPIRES].ADSGoogle Scholar
  83. [83]
    M. Carpentier and S. Davidson, Constraints on two-lepton, two quark operators, Eur. Phys. J. C 70 (2010) 1071 [arXiv:1008.0280] [SPIRES].ADSGoogle Scholar
  84. [84]
    Y. Grossman and Y. Nir, \( {K_L} \to {\pi^0}\nu \bar{\nu } \) beyond the standard model, Phys. Lett. B 398 (1997) 163 [hep-ph/9701313] [SPIRES].ADSGoogle Scholar
  85. [85]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavour violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [SPIRES].ADSGoogle Scholar
  86. [86]
    M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, Next-to-leading QCD corrections to B → X s γ in supersymmetry, Nucl. Phys. B 534 (1998) 3 [hep-ph/9806308] [SPIRES].ADSGoogle Scholar
  87. [87]
    A. Ali and D. London, Profiles of the unitarity triangle and CP-violating phases in the standard model and supersymmetric theories, Eur. Phys. J. C 9 (1999) 687 [hep-ph/9903535] [SPIRES].ADSGoogle Scholar
  88. [88]
    A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [SPIRES].ADSGoogle Scholar
  89. [89]
    C. Smith, Minimal flavor violation in supersymmetric theories, Acta Phys. Polon. Supp. 3 (2010) 53 [arXiv:0909.4444] [SPIRES].Google Scholar
  90. [90]
    T. Hurth, G. Isidori, J.F. Kamenik and F. Mescia, Constraints on New Physics in MFV models: A Model-independent analysis ofF = 1 processes, Nucl. Phys. B 808 (2009) 326 [arXiv:0807.5039] [SPIRES].ADSGoogle Scholar
  91. [91]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [SPIRES].ADSGoogle Scholar
  92. [92]
    R. Barbier et al., Report of the group on the R-parity violation, hep-ph/9810232 [SPIRES].
  93. [93]
    Y. Grossman, G. Isidori and H. Murayama, Lepton flavor mixing and \( K \to \pi \nu \bar{\nu } \) decays, Phys. Lett. B 588 (2004) 74 [hep-ph/0311353] [SPIRES].ADSGoogle Scholar
  94. [94]
    N.G. Deshpande, D.K. Ghosh and X.-G. He, Constraints on new physics from \( K \to \pi \nu \bar{\nu } \), Phys. Rev. D 70 (2004) 093003 [hep-ph/0407021] [SPIRES].ADSGoogle Scholar
  95. [95]
    A. Deandrea, J. Welzel and M. Oertel, \( K \to \pi \nu \bar{\nu } \) from standard to new physics, JHEP 10 (2004) 038 [hep-ph/0407216] [SPIRES].ADSGoogle Scholar
  96. [96]
    S. Davidson, D.C. Bailey and B.A. Campbell, Model independent constraints on leptoquarks from rare processes, Z. Phys. C 61 (1994) 613 [hep-ph/9309310] [SPIRES].ADSGoogle Scholar
  97. [97]
    E. Nikolidakis and C. Smith, Minimal Flavor Violation, Seesaw and R-parity, Phys. Rev. D 77 (2008) 015021 [arXiv:0710.3129] [SPIRES].ADSGoogle Scholar
  98. [98]
    S. Davidson and S. Descotes-Genon, Minimal Flavour Violation for Leptoquarks, JHEP 11 (2010) 073 [arXiv:1009.1998] [SPIRES].ADSGoogle Scholar
  99. [99]
    C. Smith, Rare K and B decays with non-standard missing energy, talk given at CKM2010, 6th International Workshop on the CKM Unitarity Triangle, University of Warwick, Coventry U.K., 6–10 September 2010 arXiv:1012.4398 [SPIRES].
  100. [100]
    S.R. Choudhury, N. Gaur, G.C. Joshi and B.H.J. McKellar, \( {K_L} \to {\pi^0}\nu \bar{\nu } \) in little Higgs model, hep-ph/0408125 [SPIRES].
  101. [101]
    M. Blanke, A.J. Buras, B. Duling, S. Recksiegel and C. Tarantino, FCNC Processes in the Littlest Higgs Model with T-Parity: a 2009 Look, Acta Phys. Polon. B 41 (2010) 657 [arXiv:0906.5454] [SPIRES].Google Scholar
  102. [102]
    T. Goto, Y. Okada and Y. Yamamoto, Ultraviolet divergences of flavor changing amplitudes in the littlest Higgs model with T-parity, Phys. Lett. B 670 (2009) 378 [arXiv:0809.4753] [SPIRES].ADSGoogle Scholar
  103. [103]
    P.L. Cho and M. Misiak, b → sγ decay in SU(2)L × SU(2)R × U(1) extensions of the Standard Model, Phys. Rev. D 49 (1994) 5894 [hep-ph/9310332] [SPIRES].ADSGoogle Scholar
  104. [104]
    W.-S. Hou, M. Nagashima and A. Soddu, Enhanced \( {K_L} \to {\pi^0}\nu \bar{\nu } \) from direct CP-violation in B → Kπ with four generations, Phys. Rev. D 72 (2005) 115007 [hep-ph/0508237] [SPIRES].ADSGoogle Scholar
  105. [105]
    A.J. Buras et al., Patterns of Flavour Violation in the Presence of a Fourth Generation of Quarks and Leptons, JHEP 09 (2010) 106 [arXiv:1002.2126] [SPIRES].ADSGoogle Scholar
  106. [106]
    A.J. Buras, M. Spranger and A. Weiler, The Impact of Universal Extra Dimensions on the Unitarity Triangle and Rare K and B Decays, Nucl. Phys. B 660 (2003) 225 [hep-ph/0212143] [SPIRES].ADSGoogle Scholar
  107. [107]
    G. Buchalla, A.J. Buras and M.K. Harlander, Penguin box expansion: Flavor changing neutral current processes and a heavy top quark, Nucl. Phys. B 349 (1991) 1 [SPIRES].ADSGoogle Scholar
  108. [108]
    A.J. Buras and L. Silvestrini, Upper bounds on \( K \to \pi \nu \bar{\nu } \) and K L → π 0 e + e from ϵ′/ϵ and K L → μ + μ , Nucl. Phys. B 546 (1999) 299 [hep-ph/9811471] [SPIRES].ADSGoogle Scholar
  109. [109]
    Y. Nir and M.P. Worah, Probing the flavor and CP structure of supersymmetric models with \( K \to \pi \nu \bar{\nu } \) decays, Phys. Lett. B 423 (1998) 319 [hep-ph/9711215] [SPIRES].ADSGoogle Scholar
  110. [110]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [SPIRES].ADSGoogle Scholar
  111. [111]
    S. Khalil, T. Kobayashi and O. Vives, EDM-free supersymmetric CP-violation with non-universal soft terms, Nucl. Phys. B 580 (2000) 275 [hep-ph/0003086] [SPIRES].ADSGoogle Scholar
  112. [112]
    A. Masiero, S.K. Vempati and O. Vives, Flavour physics and grand unification, arXiv:0711.2903 [SPIRES].
  113. [113]
    G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, arXiv:1002.0900 [SPIRES].
  114. [114]
    G. Colangelo, E. Nikolidakis and C. Smith, Supersymmetric models with minimal flavour violation and their running, Eur. Phys. J. C 59 (2009) 75 [arXiv:0807.0801] [SPIRES].ADSGoogle Scholar
  115. [115]
    L. Mercolli and C. Smith, EDM constraints on flavored CP-violating phases, Nucl. Phys. B 817 (2009) 1 [arXiv:0902.1949] [SPIRES].ADSGoogle Scholar
  116. [116]
    G. Colangelo and G. Isidori, Supersymmetric contributions to rare kaon decays: Beyond the single mass-insertion approximation, JHEP 09 (1998) 009 [hep-ph/9808487] [SPIRES].ADSGoogle Scholar
  117. [117]
    G. Isidori, F. Mescia, P. Paradisi, C. Smith and S. Trine, Exploring the flavour structure of the MSSM with rare K decays, JHEP 08 (2006) 064 [hep-ph/0604074] [SPIRES].ADSGoogle Scholar
  118. [118]
    A.J. Buras, T. Ewerth, S. Jager and J. Rosiek, \( {K^{+} } \to {\pi^{+} }\nu \bar{\nu } \) and \( {K_L} \to {\pi^0}\nu \bar{\nu } \) decays in the general MSSM, Nucl. Phys. B 714 (2005) 103 [hep-ph/0408142] [SPIRES].ADSGoogle Scholar
  119. [119]
    G. Isidori and P. Paradisi, Higgs-mediated \( K \to \pi \nu \bar{\nu } \) in the MSSM at large tanβ, Phys. Rev. D 73 (2006) 055017 [hep-ph/0601094] [SPIRES].ADSGoogle Scholar
  120. [120]
    J. Bijnens, E. Pallante and J. Prades, Obtaining K → ππ from off-shell K → π amplitudes, Nucl. Phys. B 521 (1998) 305 [hep-ph/9801326] [SPIRES].ADSGoogle Scholar
  121. [121]
    KTeV collaboration, E. Abouzaid et al., Final Results from the KTeV Experiment on the Decay K L → π 0 γγ, Phys. Rev. D 77 (2008) 112004 [arXiv:0805.0031] [SPIRES].ADSGoogle Scholar
  122. [122]
    NA48 collaboration, A. Lai et al., Precise measurement of the decay K L → π 0 γγ, Phys. Lett. B 536 (2002) 229 [hep-ex/0205010] [SPIRES].ADSGoogle Scholar
  123. [123]
    NA48/1 collaboration, J.R. Batley et al., Observation of the rare decay K S → π 0 e + e , Phys. Lett. B 576 (2003) 43 [hep-ex/0309075] [SPIRES].ADSGoogle Scholar
  124. [124]
    NA48/1 collaboration, J.R. Batley et al., Observation of the rare decay K S → π 0 μ + μ , Phys. Lett. B 599 (2004) 197 [hep-ex/0409011] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Université Lyon 1 & CNRS/IN2P3, UMR5822 IPNLVilleurbanne CedexFrance

Personalised recommendations