Advertisement

On the vacua of mass-deformed Gaiotto-Tomasiello theories

  • O-Kab Kwon
  • D. D. Tolla
Article

Abstract

We write explicit Lagrangian and supersymmetry transformation rules using the component fields in the \( \mathcal{N} = 2,3 \) GT theories. In the component field expansion, the manifestation of an additional \( \mathcal{N} = 1 \) supersymmetry is verified in the \( \mathcal{N} = 3 \) GT theory. We find maximal supersymmetry preserving mass-deformation of the GT theories and their classical supersymmetric discrete vacua. Some interesting aspects of the set of discrete vacua are discussed in comparison with the ABJM case.

Keywords

M-Theory Conformal Field Models in String Theory 

References

  1. [1]
    L.J. Romans, Massive N =2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986) 374 [SPIRES].ADSMathSciNetGoogle Scholar
  2. [2]
    K. Behrndt and M. Cvetič, General N =1 Supersymmetric Fluxes in Massive Type IIA String Theory, Nucl. Phys. B 708 (2005) 45 [hep-th/0407263] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [SPIRES].CrossRefGoogle Scholar
  4. [4]
    A. Tomasiello, New string vacua from twistor spaces, Phys. Rev. D 78 (2008) 046007 [arXiv:0712.1396] [SPIRES].ADSMathSciNetGoogle Scholar
  5. [5]
    P. Koerber, D. Lüst and D. Tsimpis, Type IIA AdS 4 compactifications on cosets, interpolations and domain walls, JHEP 07 (2008) 017 [arXiv:0804.0614] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    M. Petrini and A. Zaffaroni, N =2 solutions of massive type IIA and their Chern-Simons duals, JHEP 09 (2009) 107 [arXiv:0904.4915] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    D. Lüst and D. Tsimpis, New supersymmetric AdS 4 type-II vacua, JHEP 09 (2009) 098 [arXiv:0906.2561] [SPIRES].CrossRefGoogle Scholar
  8. [8]
    O. Aharony, D. Jafferis, A. Tomasiello and A. Zaffaroni, Massive type IIA string theory cannot be strongly coupled, JHEP 11 (2010) 047 [arXiv:1007.2451] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    A. Tomasiello and A. Zaffaroni, Parameter spaces of massive IIA solutions, JHEP 04 (2011) 067 [arXiv:1010.4648] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, JHEP 01 (2010) 015 [arXiv:0901.0969] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States and Hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N =6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    D. Gaiotto and A. Tomasiello, Perturbing gauge/gravity duals by a Romans mass, J. Phys. A 42 (2009) 465205 [arXiv:0904.3959] [SPIRES].ADSMathSciNetGoogle Scholar
  14. [14]
    O. Bergman and G. Lifschytz, Branes and massive IIA duals of 3d CFT’s, JHEP 04 (2010) 114 [arXiv:1001.0394] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    T. Suyama, On Large-N Solution of Gaiotto-Tomasiello Theory, JHEP 10 (2010) 101 [arXiv:1008.3950] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N =2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    T. Suyama, Eigenvalue Distributions in Matrix Models for Chern-Simons-matter Theories, arXiv:1106.3147 [SPIRES].
  18. [18]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N =5, 6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A Massive Study of M2-brane Proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    N. Lambert and P. Richmond, M2-Branes and Background Fields, JHEP 10 (2009) 084 [arXiv:0908.2896] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    Y. Kim, O.-K. Kwon, H. Nakajima and D.D. Tolla, Interaction between M2-branes and Bulk Form Fields, JHEP 11 (2010) 069 [arXiv:1009.5209] [SPIRES].ADSMathSciNetGoogle Scholar
  22. [22]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    I. Bena and N.P. Warner, A harmonic family of dielectric flow solutions with maximal supersymmetry, JHEP 12 (2004) 021 [hep-th/0406145] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    H.-C. Kim and S. Kim, Supersymmetric vacua of mass-deformed M2-brane theory, Nucl. Phys. B 839 (2010) 96 [arXiv:1001.3153] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    S. Cheon, H.-C. Kim and S. Kim, Holography of mass-deformed M2-branes, arXiv:1101.1101 [SPIRES].
  26. [26]
    M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons Theories and AdS 4 /CFT 3 Correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    A. Gustavssonand S.-J. Rey, Enhanced N =8 Supersymmetry of ABJM Theory on R (8) and R (8)/Z (2), arXiv:0906.3568 [SPIRES].
  29. [29]
    O.-K. Kwon, P. Oh and J. Sohn, Notes on Supersymmetry Enhancement of ABJM Theory, JHEP 08 (2009) 093 [arXiv:0906.4333] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    H. Samtleben and R. Wimmer, N =6 Superspace Constraints, SUSY Enhancement and Monopole Operators, JHEP 10 (2010) 080 [arXiv:1008.2739] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    C. Kim, Y. Kim, O.-K. Kwon and H. Nakajima, Vortex-type Half-BPS Solitons in ABJM Theory, Phys. Rev. D 80 (2009) 045013 [arXiv:0905.1759] [SPIRES].ADSMathSciNetGoogle Scholar
  33. [33]
    A. Hashimoto, Comments on domain walls in holographic duals of mass deformed conformal field theories, JHEP 07 (2011) 031 [arXiv:1105.3687] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of Physics, BK21 Physics Research Division, Institute of Basic ScienceSungkyunkwan UniversitySuwonKorea
  2. 2.University College, Sungkyunkwan UniversitySuwonKorea

Personalised recommendations