Advertisement

Partially supersymmetric composite Higgs models

  • Michele Redi
  • Ben Gripaios
Open Access
Article

Abstract

We study the idea of the Higgs as a pseudo-Goldstone boson within the framework of partial supersymmetry in Randall-Sundrum scenarios and their CFT duals. The Higgs and third generation of the MSSM are composites arising from a strongly coupled supersymmetric CFT with global symmetry SO(5) spontaneously broken to SO(4), whilst the light generations and gauge fields are elementary degrees of freedom whose couplings to the strong sector explicitly break the global symmetry as well as supersymmetry. The presence of supersymmetry in the strong sector may allow the compositeness scale to be raised to ∼ 10 TeV without fine tuning, consistent with the bounds from precision electro-weak measurements and flavour physics. The supersymmetric flavour problem is also solved. At low energies, this scenario reduces to the “More Minimal Supersymmetric Standard Model” where only stops, Higgsinos and gauginos are light and within reach of the LHC.

Keywords

Technicolor and Composite Models Supersymmetric Standard Model 

References

  1. [1]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  3. [3]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    C. Csáki, TASI lectures on extra dimensions and branes, hep-ph/0404096 [SPIRES].
  6. [6]
    R. Sundrum, To the fifth dimension and back (TASI2004), hep-th/0508134 [SPIRES].
  7. [7]
    H. Davoudiasl, S. Gopalakrishna, E. Ponton and J. Santiago, Warped 5-dimensional models: phenomenological status and experimental prospects, New J. Phys. 12 (2010) 075011 [arXiv:0908.1968] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [SPIRES].ADSGoogle Scholar
  11. [11]
    S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [SPIRES].ADSGoogle Scholar
  14. [14]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].ADSGoogle Scholar
  15. [15]
    M. Gillioz, A light composite Higgs boson facing electroweak precision tests, Phys. Rev. D 80 (2009) 055003 [arXiv:0806.3450] [SPIRES].ADSGoogle Scholar
  16. [16]
    C. Anastasiou, E. Furlan and J. Santiago, Realistic composite Higgs models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [SPIRES].ADSGoogle Scholar
  17. [17]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline b \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [SPIRES].ADSGoogle Scholar
  18. [18]
    K. Agashe et al., LHC signals for warped electroweak neutral gauge bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [SPIRES].ADSGoogle Scholar
  19. [19]
    UTfit collaboration, M. Bona et al., Model-independent constraints onF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    T. Gherghetta and A. Pomarol, The standard model partly supersymmetric, Phys. Rev. D 67 (2003) 085018 [hep-ph/0302001] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    R. Sundrum, SUSY splits, but then returns, arXiv:0909.5430 [SPIRES].
  23. [23]
    M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [SPIRES].ADSGoogle Scholar
  25. [25]
    B. Bellazzini, S. Pokorski, V.S. Rychkov and A. Varagnolo, Higgs doublet as a Goldstone boson in perturbative extensions of the Standard Model, JHEP 11 (2008) 027 [arXiv:0805.2107] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    W. Lerche, On Goldstone fields in supersymmetric theories, Nucl. Phys. B 238 (1984) 582 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    D. Marti and A. Pomarol, Supersymmetric theories with compact extra dimensions in N = 1 superfields, Phys. Rev. D 64 (2001) 105025 [hep-th/0106256] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    G. Cacciapaglia, G. Marandella and J. Terning, Dimensions of supersymmetric operators from AdS/CFT, JHEP 06 (2009) 027 [arXiv:0802.2946] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    G.R. Dvali, G.F. Giudice and A. Pomarol, The μ-problem in theories with gauge-mediated supersymmetry breaking, Nucl. Phys. B 478 (1996) 31 [hep-ph/9603238] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal conformal technicolor and precision electroweak tests, arXiv:1001.1361 [SPIRES].
  37. [37]
    E. Katz, A.E. Nelson and D.G.E. Walker, The intermediate Higgs, JHEP 08 (2005) 074 [hep-ph/0504252] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the minimal composite Higgs model, JHEP 04 (2009) 070 [arXiv:0902.1483] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, to appear.Google Scholar
  40. [40]
    M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [SPIRES].ADSGoogle Scholar
  41. [41]
    A. Brignole, J.A. Casas, J.R. Espinosa and I. Navarro, Low-scale supersymmetry breaking: effective description, electroweak breaking and phenomenology, Nucl. Phys. B 666 (2003) 105 [hep-ph/0301121] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    J.A. Casas, J.R. Espinosa and I. Hidalgo, The MSSM fine tuning problem: a way out, JHEP 01 (2004) 008 [hep-ph/0310137] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical soft terms and flavor physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].ADSGoogle Scholar
  45. [45]
    R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    J. Mrazek and A. Wulzer, A strong sector at the LHC: top partners in same-sign dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [SPIRES].ADSGoogle Scholar
  47. [47]
    J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.CERN, PH-THGeneva 23Switzerland

Personalised recommendations