Advertisement

Weyl equation and (non)-commutative SU(n + 1) BPS monopoles

  • Anastasia Doikou
  • Theodora Ioannidou
Article

Abstract

We apply the ADHMN construction to obtain the SU(n + 1) (for generic values of n) spherically symmetric BPS monopoles with minimal symmetry breaking. In particular, the problem simplifies by solving the Weyl equation, leading to a set of coupled equations, whose solutions are expressed in terms of the Whittaker functions. Next, this construction is generalized for non-commutative SU(n + 1) BPS monopoles, where the corresponding solutions are given in terms of the Heun B functions.

Keywords

Solitons Monopoles and Instantons Non-Commutative Geometry 

References

  1. [1]
    D. Wilkinson and F.A. Bais, Exact SU(N) monopole solutions with spherical symmetry, Phys. Rev. D 19 (1979) 2410 [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    F.A. Bais and H.A. Weldon, Exact monopole solutions in SU(n) gauge theory, Phys. Rev. Lett. 41 (1978) 601 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    N. Ganoulis, P. Goddard and D.I. Olive, Selfdual monopoles and Toda molecules, Nucl. Phys. B 205 (1982) 601 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    T.A. Ioannidou and P.M. Sutcliffe, Monopoles and harmonic maps, J. Math. Phys. 40 (1999) 5440 [hep-th/9903183] [SPIRES]. MATHCrossRefMathSciNetADSGoogle Scholar
  5. [5]
    W. Nahm, The construction of all self-dual multimonopoles by the ADHM method, in Monopoles in quantum field theory, N.S. Craigie et al. eds., World Scientific, Singapore (1982).Google Scholar
  6. [6]
    M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y.I. Manin, Construction of instantons, Phys. Lett. A 65 (1978) 185 [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    A.S. Dancer, Nahm data and SU(3) monopoles, Nonlinearity 5 (1992) 1355. MATHCrossRefMathSciNetADSGoogle Scholar
  9. [9]
    C.J. Houghton and P.M. Sutcliffe, SU(N) monopoles and platonic symmetry, J. Math. Phys. 38 (1997) 5576 [hep-th/9708006] [SPIRES]. MATHCrossRefMathSciNetADSGoogle Scholar
  10. [10]
    N.S. Manton and P.M. Sutcliffe, Topological solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2004).MATHCrossRefGoogle Scholar
  11. [11]
    D. Bak, Deformed Nahm equation and a noncommutative BPS monopole, Phys. Lett. B 471 (1999) 149 [hep-th/9910135] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    E.T. Whittaker and G.N. Watson, A course of modern analysis, Cambridge University Press, Cambridge U.K. (1927).MATHGoogle Scholar
  13. [13]
    M. Abramowitz and I. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, Dover Publications Inc., New York U.S.A. (1972).MATHGoogle Scholar
  14. [14]
    G. Arfken, Mathematical methods for physicists, Academic Press, New York U.S.A. (1985).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of Engineering SciencesUniversity of PatrasPatrasGreece
  2. 2.Department of Mathematics, Physics and Computational Sciences, Faculty of EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations