Counting defects with the two-point correlator

  • Arttu Rajantie
  • Anders Tranberg


We study how topological defects manifest themselves in the equal-time two-point field correlator. We consider a scalar field with Z 2 symmetry in 1, 2 and 3 spatial dimensions, allowing for kinks, domain lines and domain walls, respectively. Using numerical lattice simulations, we find that in any number of dimensions, the correlator in momentum space is to a very good approximation the product of two factors, one describing the spatial distribution of the defects and the other describing the defect shape. When the defects are produced by the Kibble mechanism, the former has a universal form, which we determine numerically. This signature makes it possible to determine the kink density from the field correlator without having to resort to the Gaussian approximation. This is essential when studying field dynamics with methods relying only on correlators (Schwinger-Dyson, 2PI).


Solitons Monopoles and Instantons Nonperturbative Effects Global Symmetries Lattice Quantum Field Theory 


  1. [1]
    T.W.B. Kibble, Topology Of Cosmic Domains And Strings, J. Phys. A 9 (1976) 1387.ADSGoogle Scholar
  2. [2]
    W.H. Zurek, Cosmological Experiments in Superfluid Helium?, Nature 317 (1985) 505 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    A. Rajantie, Formation of topological defects in gauge field theories, Int. J. Mod. Phys. A 17 (2002) 1 [hep-ph/0108159] [SPIRES].ADSGoogle Scholar
  4. [4]
    I. Chuang, B. Yurke, R. Durrer and N. Turok Science 251 (1991) 1336 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    M.J. Bowick, L. Chandar, E.A. Schiff and A.M. Srivastava, The Cosmological Kibble mechanism in the laboratory: String formation in liquid crystals, Science 263 (1994) 943 [hep-ph/9208233] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    C. Baeuerle, Y.M. Bunkov, S.N. Fisher, H. Godfrin and G.R. Pickett, Laboratory simulation of cosmic string formation in the early Universe using superfluid He-3, Nature 382 (1996) 332 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    V.M.H. Ruutu et al., Big bang simulation in superfluid 3He-B – Vortex nucleation in neutron-irradiated superflow, Nature 382 (1996) 334 [cond-mat/9512117] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    S. Digal, R. Ray and A.M. Srivastava, Observing Correlated Production of Defects-Antidefects in Liquid Crystals, Phys. Rev. Lett. 83 (1999) 5030 [hep-ph/9805502] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    S. Ducci et al., Order Parameter Fragmentation after a Symmetry-Breaking Transition, Phys. Rev. Lett. 83 (1999) 5210.CrossRefADSGoogle Scholar
  10. [10]
    S. Casado, Topological defects after a quench in a Bénard-Marangoni convection system, Phys. Rev. E 63 (2001) 057301.ADSGoogle Scholar
  11. [11]
    A. Maniv, E. Polturak and G. Koren, Observation of Magnetic Flux Generated Spontaneously During a Rapid Quench of Superconducting Films, Phys. Rev. Lett. 91 (2003) 197001 [SPIRES]. CrossRefADSGoogle Scholar
  12. [12]
    J.R. Kirtley, C.C. Tsuei and F. Tafuri, Thermally Activated Spontaneous Fluxoid Formation in Superconducting Thin Film Rings, Phys. Rev. Lett. 90 (2003) 257001.CrossRefADSGoogle Scholar
  13. [13]
    R. Monaco et al., Experiments on spontaneous vortex formation in Josephson tunnel junctions, Phys. Rev. B74 (2006) 144513.ADSGoogle Scholar
  14. [14]
    N.D. Antunes and L.M.A. Bettencourt, Out of equilibrium dynamics of a quench-induced phase transition and topological defect formation, Phys. Rev. D 55 (1997) 925 [hep-ph/9605277] [SPIRES].ADSGoogle Scholar
  15. [15]
    P. Laguna and W.H. Zurek, Density of kinks after a quench: When symmetry breaks, how big are the pieces?, Phys. Rev. Lett. 78 (1997) 2519 [gr-qc/9607041] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    P. Laguna and W.H. Zurek, Critical dynamics of symmetry breaking: Quenches, dissipation and cosmology, Phys. Rev. D 58 (1998) 085021 [hep-ph/9711411] [SPIRES].ADSGoogle Scholar
  17. [17]
    N.D. Antunes, L.M.A. Bettencourt and W.H. Zurek, Vortex string formation in a 3D U(1) temperature quench, Phys. Rev. Lett. 82 (1999) 2824 [hep-ph/9811426] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    A. Yates and W.H. Zurek, Vortex formation in two dimensions: When symmetry breaks, how big are the pieces?, Phys. Rev. Lett. 80 (1998) 5477 [hep-ph/9801223] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    M. Hindmarsh and A. Rajantie, Defect formation and local gauge invariance, Phys. Rev. Lett. 85 (2000) 4660 [cond-mat/0007361] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    A.J. Gill and R.J. Rivers, The Dynamics of vortex and monopole production by quench induced phase separation, Phys. Rev. D 51 (1995) 6949 [hep-th/9410159] [SPIRES].ADSGoogle Scholar
  21. [21]
    G. Karra and R.J. Rivers, The Densities, Correlations and Length Distributions of Vortices Produced at a Gaussian Quench, hep-ph/9603413 [SPIRES].
  22. [22]
    G.D. Lythe, Domain formation in transitions with noise and a time-dependent bifurcation parameter, Phys. Rev. E 53 (1996) R4271.ADSGoogle Scholar
  23. [23]
    M. Uhlmann, R. Schutzhold and U.R. Fischer, O(N) symmetry-breaking quantum quench: Topological defects versus quasiparticles, Phys. Rev. D 81 (2010) 025017 [SPIRES].ADSGoogle Scholar
  24. [24]
    D. Boyanovsky, D.-s. Lee and A. Singh, Phase transitions out-of-equilibrium: Domain formation and growth, Phys. Rev. D 48 (1993) 800 [hep-th/9212083] [SPIRES].ADSGoogle Scholar
  25. [25]
    G.J. Stephens, E.A. Calzetta, B.L. Hu and S.A. Ramsey, Defect formation and critical dynamics in the early universe, Phys. Rev. D 59 (1999) 045009 [gr-qc/9808059] [SPIRES].ADSGoogle Scholar
  26. [26]
    B. Halperin, Statistical mechanics of topological defects, in Physics of Defects, eds. R. Balian, M. Kleman and J.P. Poiries, North-Holland, New York U.S.A. (1981).Google Scholar
  27. [27]
    F. Liu and G.F. Mazenko, Defect-defect correlation in the dynamics of first-order phase transitions, Phys. Rev. B 46 (1992) 5963 [SPIRES].ADSGoogle Scholar
  28. [28]
    D. Ibaceta and E. Calzetta, Counting defects in an instantaneous quench, Phys. Rev. E 60 (1999) 2999 [hep-ph/9810301] [SPIRES].ADSGoogle Scholar
  29. [29]
    A. Rajantie and A. Tranberg, Looking for defects in the 2PI correlator, JHEP 11 (2006) 020 [hep-ph/0607292] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    R.D. Blundell and A.J. Bray, Phase ordering dynamics of the o(n) model-exact predictions and numerical results, cond-mat/9310075.
  31. [31]
    S.Y. Khlebnikov and I.I. Tkachev, Classical decay of inflaton, Phys. Rev. Lett. 77 (1996) 219 [hep-ph/9603378] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    J. Smit, J.C. Vink and M. Salle, Initial conditions for simulated ’tachyonic preheating’ and the Hartree ensemble approximation, hep-ph/0112057 [SPIRES].
  33. [33]
    J. García-Bellido, M. Garcia Perez and A. Gonzalez-Arroyo, Symmetry breaking and false vacuum decay after hybrid inflation, Phys. Rev. D 67 (2003) 103501 [hep-ph/0208228] [SPIRES]. ADSGoogle Scholar
  34. [34]
    A. Arrizabalaga, J. Smit and A. Tranberg, Tachyonic preheating using 2PI-1/N dynamics and the classical approximation, JHEP 10 (2004) 017 [hep-ph/0409177] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    A. Rajantie and D.J. Weir, Soliton form factors from lattice simulations, arXiv:1006.2410 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Theoretical Physics, Blackett LaboratoryImperial CollegeLondonUnited Kingdom
  2. 2.Helsinki Institute of PhysicsHelsinkiFinland
  3. 3.Department of Physical SciencesUniversity of OuluOuluFinland

Personalised recommendations