Non-perturbative improvement of quark mass renormalization in two-flavour lattice QCD

  • ALPHA Collaboration
  • Patrick Fritzsch
  • Jochen Heitger
  • Nazario Tantalo


We non-perturbatively determine the renormalization constant and the improvement coefficients relating the renormalized current and subtracted quark mass of (quenched) valence quarks propagating in a sea of O(a) improved two massless quarks. We employ the Schrödinger functional scheme and fix the physical extent of the box by working at a constant value of the renormalized coupling. Our calculation yields results which cover two regions of bare parameter space. One is the weak-coupling region suitable for volumes of about half a fermi. By making simulations in this region, quarks as heavy as the bottom can be propagated with the full relativistic QCD action and renormalization problems in HQET can be solved non-perturbatively by a matching to QCD infinite volume. The other region refers to the common parameter range in large-volume simulations of two-flavour lattice QCD, where our results have particular relevance for charm physics applications.


Lattice QCD Quark Masses and SM Parameters Nonperturbative Effects Heavy Quark Physics 


  1. [1]
    D.B. Kaplan, Chiral Symmetry and Lattice Fermions, arXiv:0912.2560 [SPIRES].
  2. [2]
    R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. I: O(a) improvement, JHEP 08 (2004) 007 [hep-lat/0306014] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    K. Symanzik, Continuum Limit and Improved Action in Lattice Theories. 1. Principles and ϕ 4 Theory, Nucl. Phys. B 226 (1983) 187 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    K. Symanzik, Continuum Limit and Improved Action in Lattice Theories. 2. O(N) Nonlinear σ-model in Perturbation Theory, Nucl. Phys. B 226 (1983) 205 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    B. Sheikholeslami and R. Wohlert, Improved Continuum Limit Lattice Action for QCD with Wilson Fermions, Nucl. Phys. B 259 (1985) 572 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    M. Lüscher and P. Weisz, On-Shell Improved Lattice Gauge Theories, Commun. Math. Phys. 97 (1985) 59 [Erratum ibid. 98 (1985) 433] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    G.M. de Divitiis and R. Petronzio, Non-perturbative renormalization constants on the lattice from flavour non-singlet Ward identities, Phys. Lett. B 419 (1998) 311 [hep-lat/9710071] [SPIRES].ADSGoogle Scholar
  8. [8]
    ALPHA collaboration, M. Guagnelli et al., Non-perturbative results for the coefficients b m and b Ab P in O(a) improved lattice QCD, Nucl. Phys. B 595 (2001) 44 [hep-lat/0009021] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    ALPHA collaboration, J. Heitger and J. Wennekers, Effective heavy-light meson energies in small-volume quenched QCD, JHEP 02 (2004) 064 [hep-lat/0312016] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, The Schrödinger functional: A Renormalizable probe for non-abelian gauge theories, Nucl. Phys. B 384 (1992) 168 [hep-lat/9207009] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    S. Sint, On the Schrödinger functional in QCD, Nucl. Phys. B 421 (1994) 135 [hep-lat/9312079] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    S. Sint, One loop renormalization of the QCD Schrödinger functional, Nucl. Phys. B 451 (1995) 416 [hep-lat/9504005] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    K. Jansen et al., Non-perturbative renormalization of lattice QCD at all scales, Phys. Lett. B 372 (1996) 275 [hep-lat/9512009] [SPIRES].ADSGoogle Scholar
  14. [14]
    ALPHA collaboration, J. Heitger and R. Sommer, Non-perturbative heavy quark effective theory, JHEP 02 (2004) 022 [hep-lat/0310035] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    M. Guagnelli, F. Palombi, R. Petronzio and N. Tantalo, F B and two scales problems in lattice QCD, Phys. Lett. B 546 (2002) 237 [hep-lat/0206023] [SPIRES].ADSGoogle Scholar
  16. [16]
    D. Guazzini, R. Sommer and N. Tantalo, Precision for B-meson matrix elements, JHEP 01 (2008) 076 [arXiv:0710.2229] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    ALPHA collaboration, J. Rolf and S. Sint, A precise determination of the charm quark’s mass in quenched QCD, JHEP 12 (2002) 007 [hep-ph/0209255] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    J. Heitger and A. Jüttner, Lattice cutoff effects for \( {F_{{{\text{D}}_{\text{s}}}}} \) with improved Wilson fermions - a final lesson from the quenched case, JHEP 05 (2009) 101 [arXiv:0812.2200] [SPIRES].ADSGoogle Scholar
  19. [19]
    G. von Hippel, R. Sommer, J. Heitger, S. Schaefer and N. Tantalo, Ds physics from fine lattices, PoS(LATTICE 2008)227 [arXiv:0810.0214] [SPIRES].
  20. [20]
    T. Bhattacharya, R. Gupta, W. Lee, S.R. Sharpe and J.M.S. Wu, Improved bilinears in lattice QCD with non-degenerate quarks, Phys. Rev. D 73 (2006) 034504 [hep-lat/0511014] [SPIRES].ADSGoogle Scholar
  21. [21]
    M. Della Morte, R. Homann and R. Sommer, Non-perturbative improvement of the axial current for dynamical Wilson fermions, JHEP 03 (2005) 029 [hep-lat/0503003] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    T. Bhattacharya, R. Gupta, W.-J. Lee and S.R. Sharpe, O(a) improved renormalization constants, Phys. Rev. D 63 (2001) 074505 [hep-lat/0009038] [SPIRES].ADSGoogle Scholar
  23. [23]
    R. Sommer, Non-perturbative QCD: Renormalization, O(a)-improvement and matching to heavy quark effective theory, lectures given at ILFTN Workshop on “Perspectives in Lattice QCD”, Nara Japan, 31 October – 11 November 2005 hep-lat/0611020 [SPIRES].
  24. [24]
    M. Luscher, S. Sint, R. Sommer and P. Weisz, Chiral symmetry and O(a) improvement in lattice QCD, Nucl. Phys. B 478 (1996) 365 [hep-lat/9605038] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    M. Luscher, S. Sint, R. Sommer, P. Weisz and U. Wol, Non-perturbative O(a) improvement of lattice QCD, Nucl. Phys. B 491 (1997) 323 [hep-lat/9609035] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    M. Della Morte, R. Sommer and S. Takeda, On cutoff effects in lattice QCD from short to long distances, Phys. Lett. B 672 (2009) 407 [arXiv:0807.1120] [SPIRES].ADSGoogle Scholar
  27. [27]
    M. Della Morte et al., Towards a non-perturbative matching of HQET and QCD with dynamical light quarks, PoS(LATTICE 2007)246 [arXiv:0710.1188] [SPIRES].
  28. [28]
    M. Della Morte, P. Fritzsch, J. Heitger and R. Sommer, Non-perturbative quark mass dependence in the heavy-light sector of two-flavour QCD, PoS(LATTICE 2008)226 [arXiv:0810.3166] [SPIRES].
  29. [29]
    L. Del Debbio, L. Giusti, M. Luscher, R. Petronzio and N. Tantalo, QCD with light Wilson quarks on fine lattices (I): first experiences and physics results, JHEP 02 (2007) 056 [hep-lat/0610059] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    M. Della Morte et al., Preparing for N f =2 simulations at small lattice spacings, PoS(LATTICE 2007)255 [arXiv:0710.1263] [SPIRES].
  31. [31]
    M. Hasenbusch, Speeding up the Hybrid-Monte-Carlo algorithm for dynamical fermions, Phys. Lett. B 519 (2001) 177 [hep-lat/0107019] [SPIRES].ADSGoogle Scholar
  32. [32]
    M. Hasenbusch and K. Jansen, Speeding up lattice QCD simulations with clover-improved Wilson fermions, Nucl. Phys. B 659 (2003) 299 [hep-lat/0211042] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    ALPHA collaboration, M. Della Morte et al., Simulating the Schrödinger functional with two pseudo-fermions, Comput. Phys. Commun. 156 (2003) 62 [hep-lat/0307008] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    H.B. Meyer et al., Exploring the HMC trajectory-length dependence of autocorrelation times in lattice QCD, Comput. Phys. Commun. 176 (2007) 91 [hep-lat/0606004] [SPIRES].CrossRefGoogle Scholar
  35. [35]
    ALPHA collaboration, U. Wol, Monte Carlo errors with less errors, Comput. Phys. Commun. 156 (2004) 143 [hep-lat/0306017] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    S. Sint and P. Weisz, Further results on O(a) improved lattice QCD to one-loop order of perturbation theory, Nucl. Phys. B 502 (1997) 251 [hep-lat/9704001] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    ALPHA collaboration, M. Della Morte, R. Homann, F. Knechtli and U. Wol, Impact of large cutoff-effects on algorithms for improved Wilson fermions, Comput. Phys. Commun. 165 (2005) 49 [hep-lat/0405017] [SPIRES].MATHCrossRefADSGoogle Scholar
  38. [38]
    L. Del Debbio, L. Giusti, M. Luscher, R. Petronzio and N. Tantalo, Stability of lattice QCD simulations and the thermodynamic limit, JHEP 02 (2006) 011 [hep-lat/0512021] [SPIRES]CrossRefADSGoogle Scholar
  39. [39]
    ALPHA collaboration, M. Della Morte et al., Computation of the strong coupling in QCD with two dynamical flavours, Nucl. Phys. B 713 (2005) 378 [hep-lat/0411025] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    ALPHA collaboration, M. Della Morte et al., Non-perturbative quark mass renormalization in two-flavor QCD, Nucl. Phys. B 729 (2005) 117 [hep-lat/0507035] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    M. Della Morte, N. Garron, M. Papinutto and R. Sommer, Heavy quark effective theory computation of the mass of the bottom quark, JHEP 01 (2007) 007 [hep-ph/0609294] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    B. Blossier, M. Della Morte, N. Garron and R. Sommer, HQET at order 1/m: I. Non-perturbative parameters in the quenched approximation, JHEP 06 (2010) 002 [arXiv:1001.4783] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    ALPHA collaboration, J. Heitger, A. Juttner, R. Sommer and J. Wennekers, Non-perturbative tests of heavy quark effective theory, JHEP 11 (2004) 048 [hep-ph/0407227] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    P. Fritzsch, B-meson properties from non-perturbative matching of HQET to finite-volume two-flavour QCD, Ph.D. Thesis, Universitat Munster, Munster Germany (2009).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • ALPHA Collaboration
  • Patrick Fritzsch
    • 1
    • 2
  • Jochen Heitger
    • 2
  • Nazario Tantalo
    • 3
    • 4
  1. 1.School of Physics and AstronomyUniversity of SouthamptonHighfieldU.K.
  2. 2.Institut für Theoretische PhysikWestfälische Wilhelms-Universität MünsterMünsterGermany
  3. 3.Dipartimento di FisicaUniversità di Roma “Tor Vergata”, INFN, Sezione di Roma “Tor Vergata”RomeItaly
  4. 4.Centro “Enrico Fermi”RomeItaly

Personalised recommendations