Advertisement

Non-perturbative renormalization of quark bilinear operators with N f = 2 (tmQCD) Wilson fermions and the tree-level improved gauge action

  • European Twisted Mass collaboration
  • M. Constantinou
  • P. Dimopoulos
  • R. Frezzotti
  • G. Herdoiza
  • K. Jansen
  • V. Lubicz
  • H. Panagopoulos
  • G. C. Rossi
  • S. Simula
  • F. Stylianou
  • A. Vladikas
Open Access
Article

Abstract

We present results for the renormalization constants of bilinear quark operators obtained by using the tree-level Symanzik improved gauge action and the N f = 2 twisted mass fermion action at maximal twist, which guarantees automatic \( \mathcal{O} \)(a)-improvement. Our results are also relevant for the corresponding standard (un-twisted) Wilson fermionic action since the two actions only differ, in the massless limit, by a chiral rotation of the quark fields. The scale-independent renormalization constants Z V , Z A and the ratio Z P /Z S have been computed using the RI-MOMapproach, as well as other alternative methods. For Z A and Z P /Z S , the latter are based on both standard twisted mass and Osterwalder-Seiler fermions, while for Z V a Ward Identity has been used. The quark field renormalization constant Z q and the scale dependent renormalization constants Z S , Z P and Z T are determined in the RI-MOM scheme. Leading discretization effects of \( \mathcal{O}\left( {{g^2}{a^2}} \right) \), evaluated in one-loop perturbation theory, are explicitly subtracted from the RI-MOM estimates.

Keywords

Lattice QCD Renormalization Regularization and Renormalons 

References

  1. [1]
    G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, A general method for nonperturbative renormalization of lattice operators, Nucl. Phys. B 445 (1995) 81 [hep-lat/9411010] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    P. Dimopoulos et al., Renormalisation of quark bilinears with N f = 2 Wilson fermions and tree-level improved gauge action, PoS(LATTICE 2007)241 [arXiv:0710.0975] [SPIRES].
  3. [3]
    European Twisted Mass collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks, Phys. Lett. B 650 (2007) 304 [hep-lat/0701012] [SPIRES].ADSGoogle Scholar
  4. [4]
    European Twisted Mass collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks: simulation and analysis details, Comput. Phys. Commun. 179 (2008) 695 [arXiv:0803.0224] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    European Twisted Mass collaboration, C. Urbach, Lattice QCD with two light Wilson quarks and maximally twisted mass, PoS(LATTICE 2007)022 [arXiv:0710.1517] [SPIRES].
  6. [6]
    European Twisted Mass collaboration, R. Baron et al., Light meson physics from maximally twisted mass lattice QCD, arXiv:0911.5061 [SPIRES].
  7. [7]
    S. Aoki, K.-I. Nagai, Y. Taniguchi and A. Ukawa, Perturbative renormalization factors of bilinear quark operators for improved gluon and quark actions in lattice QCD, Phys. Rev. D 58 (1998) 074505 [hep-lat/9802034] [SPIRES].ADSGoogle Scholar
  8. [8]
    M. Constantinou, V. Lubicz, H. Panagopoulos and F. Stylianou, O(a 2) corrections to the one-loop propagator and bilinears of clover fermions with Symanzik improved gluons, JHEP 10 (2009) 064 [arXiv:0907.0381] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    M. Gockeler et al., Perturbative and nonperturbative renormalization in lattice QCD, arXiv:1003.5756 [SPIRES].
  10. [10]
    XLF collaboration, K. Jansen, M. Papinutto, A. Shindler, C. Urbach and I. Wetzorke, Quenched scaling of Wilson twisted mass fermions, JHEP 09 (2005) 071 [hep-lat/0507010] [SPIRES].Google Scholar
  11. [11]
    D. Becirevic et al., Exploring twisted mass lattice QCD with the clover term, Phys. Rev. D 74 (2006) 034501 [hep-lat/0605006] [SPIRES].ADSGoogle Scholar
  12. [12]
    K. Osterwalder and E. Seiler, Gauge field theories on the lattice, Annals Phys. 110 (1978) 440 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. II: four-quark operators, JHEP 10 (2004) 070 [hep-lat/0407002] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. I: O(a) improvement, JHEP 08 (2004) 007 [hep-lat/0306014] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    Alpha collaboration, R. Frezzotti, P.A. Grassi, S. Sint and P. Weisz, Lattice QCD with a chirally twisted mass term, JHEP 08 (2001) 058 [hep-lat/0101001] [SPIRES].Google Scholar
  16. [16]
    P. Dimopoulos, H. Simma and A. Vladikas, Quenched BK-parameter from Osterwalder-Seiler tmQCD quarks and mass-splitting discretization effects, JHEP 07 (2009) 007 [arXiv:0902.1074] [SPIRES].Google Scholar
  17. [17]
    UKQCD collaboration, M. Foster and C. Michael, Quark mass dependence of hadron masses from lattice QCD, Phys. Rev. D 59 (1999) 074503 [hep-lat/9810021] [SPIRES].ADSGoogle Scholar
  18. [18]
    R. Frezzotti, V. Lubicz and S. Simula, Electromagnetic form factor of the pion from twisted-mass lattice QCD at N f = 2, Phys. Rev. D 79 (2009) 074506 [arXiv:0812.4042] [SPIRES].ADSGoogle Scholar
  19. [19]
    D. Becirevic, V. Gimenez, V. Lubicz, G. Martinelli, M. Papinutto and J. Reyes, Renormalization constants of quark operators for the non-perturbatively improved Wilson action, JHEP 08 (2004) 022 [hep-lat/0401033] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    D. Becirevic, V. Gimenez, V. Lubicz and G. Martinelli, Light quark masses from lattice quark propagators at large momenta, Phys. Rev. D 61 (2000) 114507 [hep-lat/9909082] [SPIRES].ADSGoogle Scholar
  21. [21]
    J.-R. Cudell, A. Le Yaouanc and C. Pittori, Pseudoscalar vertex, Goldstone boson and quark masses on the lattice, Phys. Lett. B 454 (1999) 105 [hep-lat/9810058] [SPIRES].ADSGoogle Scholar
  22. [22]
    J.R. Cudell, A. Le Yaouanc and C. Pittori, Large pion pole in Z MOM S/Z MOM P from Wilson action data, Phys. Lett. B 516 (2001) 92 [hep-lat/0101009] [SPIRES].ADSGoogle Scholar
  23. [23]
    L. Giusti and A. Vladikas, RI/MOM renormalization window and Goldstone pole contamination, Phys. Lett. B 488 (2000) 303 [hep-lat/0005026] [SPIRES].ADSGoogle Scholar
  24. [24]
    J.A. Gracey, Three loop anomalous dimension of non-singlet quark currents in the RI’ scheme, Nucl. Phys. B 662 (2003) 247 [hep-ph/0304113] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    K.G. Chetyrkin and A. Retey, Renormalization and running of quark mass and field in the regularization invariant and MS-bar schemes at three and four loops, Nucl. Phys. B 583 (2000) 3 [hep-ph/9910332] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    G.P. Lepage and P.B. Mackenzie, On the viability of lattice perturbation theory, Phys. Rev. D 48 (1993) 2250 [hep-lat/9209022] [SPIRES].ADSGoogle Scholar
  27. [27]
    European Twisted Mass collaboration, B. Blossier et al., Light quark masses and pseudoscalar decay constants from N f = 2 lattice QCD with twisted mass fermions, JHEP 04 (2008) 020 [arXiv:0709.4574] [SPIRES].Google Scholar
  28. [28]
    R. Frezzotti, G. Martinelli, M. Papinutto and G.C. Rossi, Reducing cutoff effects in maximally twisted lattice QCD close to the chiral limit, JHEP 04 (2006) 038 [hep-lat/0503034] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    G. Rossi, R. Frezzotti, G. Martinelli and M. Papinutto, Cutoff effects in maximally twisted LQCD, PoS(LAT2005)285 [hep-lat/0509168] [SPIRES].
  30. [30]
    R. Frezzotti, G. Martinelli, M. Papinutto and G.C. Rossi, Reducing cutoff effects in maximally twisted lattice QCD close to the chiral limit, JHEP 04 (2006) 038 [hep-lat/0503034] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    G. Rossi, R. Frezzotti, G. Martinelli and M. Papinutto, Cutoff effects in maximally twisted LQCD, PoS(LAT2005)285 [hep-lat/0509168] [SPIRES].

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • European Twisted Mass collaboration
  • M. Constantinou
    • 1
  • P. Dimopoulos
    • 2
  • R. Frezzotti
    • 3
    • 4
  • G. Herdoiza
    • 5
  • K. Jansen
    • 5
  • V. Lubicz
    • 6
    • 7
  • H. Panagopoulos
    • 1
  • G. C. Rossi
    • 3
    • 4
  • S. Simula
    • 7
  • F. Stylianou
    • 1
  • A. Vladikas
    • 4
  1. 1.Department of PhysicsUniversity of CyprusNicosiaCyprus
  2. 2.Dip. di FisicaUniversità di Roma “La Sapienza” and INFNRomeItaly
  3. 3.Dip. di FisicaUniversità di Roma “Tor Vergata”RomeItaly
  4. 4.INFN, Sez. di Roma “Tor Vergata”, c/o Dip. di FisicaUniversità di Roma “Tor Vergata”RomeItaly
  5. 5.NIC, DESYZeuthenGermany
  6. 6.Dip. di FisicaUniversità di Roma TreRomeItaly
  7. 7.INFNRomeItaly

Personalised recommendations