Heavy quark flavour dependence of multiparticle production in QCD jets

  • Redamy Pérez-Ramos
  • Vincent Mathieu
  • Miguel-Angel Sanchis-Lozano


After inserting the heavy quark mass dependence into QCD partonic evolution equations, we determine the mean charged hadron multiplicity and second multiplicity correlators of jets produced in high energy collisions. We thereby extend the so-called dead cone effect to the phenomenology of multiparticle production in QCD jets and find that the average multiplicity of heavy-quark initiated jets decreases significantly as compared to the massless case, even taking into account the weak decay products of the leading primary quark. We emphasize the relevance of our study as a complementary check of b-tagging techniques at hadron colliders like the Tevatron and the LHC.


Jets Hadronic Colliders QCD 


  1. [1]
    E. Leader and E. Predazzi, An introduction to gauge theories and modern particle physics. Volume 2: CP violation, QCD and hard processes, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. volume 4, Cambridge University Press, Cambridge U.K. (1996).Google Scholar
  2. [2]
    G. Aad et al. Expected performance of the ATLAS experiment — Detector, trigger and physics, arXiv:0901.0512 [SPIRES].
  3. [3]
    Y.L. Dokshitzer, V.A. Khoze and S.I. Troian, On specific QCD properties of heavy quark fragmentation (’dead cone’), J. Phys. G 17 (1991) 1602 [SPIRES].ADSGoogle Scholar
  4. [4]
    Y.L. Dokshitzer, F. Fabbri, V.A. Khoze and W. Ochs, Multiplicity difference between heavy and light quark jets revisited, Eur. Phys. J. C 45 (2006) 387 [hep-ph/0508074] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    Y.L. Dokshitzer et al., Basics of perturbative QCD, Editions Frentieres, Gif-sur-Yvette France: Ed. Frontieres (1991), pag. 274.Google Scholar
  6. [6]
    G. Curci, W. Furmanski and R. Petronzio, Evolution of parton densities beyond leading order: the nonsinglet case, Nucl. Phys. B 175 (1980) 27 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    W. Furmanski and R. Petronzio, Lepton-hadron processes beyond leading order in quantum chromodynamics, Z. Phys. C 11 (1982) 293.ADSGoogle Scholar
  8. [8]
    J.C. Collins, Hard-scattering factorization with heavy quarks: a general treatment, Phys. Rev. D 58 (1998) 094002 [hep-ph/9806259] [SPIRES].ADSGoogle Scholar
  9. [9]
    V.N. Baier, V.S. Fadin and V.A. Khoze, Quasireal electron method in high-energy quantum electrodynamics, Nucl. Phys. B 65 (1973) 381 [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    F. Krauss and G. Rodrigo, Resummed jet rates for e + e annihilation into massive quarks, Phys. Lett. B 576 (2003) 135 [hep-ph/0303038] [SPIRES].ADSGoogle Scholar
  11. [11]
    S. Kluth, Tests of quantum chromo dynamics at e + e colliders, Rept. Prog. Phys. 69 (2006) 1771 [hep-ex/0603011] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    Y.I. Azimov, Y.L. Dokshitzer, V.A. Khoze and S.I. Troyan, Similarity of parton and hadron spectra in QCD jets, Z. Phys. C 27 (1985) 65 [SPIRES].ADSGoogle Scholar
  13. [13]
    Y.L. Dokshitzer, V.A. Khoze and S.I. Troian, Specific features of heavy quark production. LPHD approach to heavy particle spectra, Phys. Rev. D 53 (1996) 89 [hep-ph/9506425] [SPIRES].ADSGoogle Scholar
  14. [14]
    OPAL collaboration, R. Akers et al., A measurement of charged particle multiplicity in \( Z_{0} \rightarrow c\bar{c} \) and \( Z_{0} \rightarrow b\bar{b} \) events, Phys. Lett. B 352 (1995) 176 [SPIRES].ADSGoogle Scholar
  15. [15]
    LEP, ALEPH, DELPHI, L3, OPAL collaborations and LEP Electroweak Working Group, Combined preliminary data on Z parameters from the LEP experiments and constraints on the standard model, contributed to the 27th International Conference on High-Energy Physics (ICHEP94), July 20–27, Glasgow, U.K. (1994).Google Scholar
  16. [16]
    R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. volume 8, Cambridge University Press, Cambridge U.K. (1996).CrossRefGoogle Scholar
  17. [17]
    M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Addison Wesley, Reading U.S.A. (1995), pag. 842.Google Scholar
  18. [18]
    I.M. Dremin and J.W. Gary, Hadron multiplicities, Phys. Rept. 349 (2001) 301 [hep-ph/0004215] [SPIRES].MATHCrossRefADSGoogle Scholar
  19. [19]
    F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [SPIRES].MATHCrossRefADSGoogle Scholar
  20. [20]
    T.H. Burnett and N.M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett. 20 (1968) 86 [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    A. Capella, I.M. Dremin, J.W. Gary, V.A. Nechitailo and J. Tran Thanh Van, Evolution of average multiplicities of quark and gluon jets, Phys. Rev. D 61 (2000) 074009 [hep-ph/9910226] [SPIRES].ADSGoogle Scholar
  22. [22]
    A.H. Mueller and P. Nason, Heavy particle content in QCD jets, Nucl. Phys. B 266 (1986) 265 [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    V. Mathieu, N. Kochelev and V. Vento, The physics of glueballs, Int. J. Mod. Phys. E 18 (2009) 1 [arXiv:0810.4453] [SPIRES].ADSGoogle Scholar
  24. [24]
    A.V. Kisselev and V.A. Petrov, Multiple hadron production in e + e annihilation induced by heavy primary quarks. New analysis, Phys. Part. Nucl. 39 (2008) 798 [arXiv:0804.0106] [SPIRES].CrossRefGoogle Scholar
  25. [25]
    E.D. Malaza and B.R. Webber, Multiplicity distributions in quark and gluon jets, Nucl. Phys. B 267 (1986) 702 [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    Y.L. Dokshitzer, V.S. Fadin and V.A. Khoze, Double logs of perturbative QCD for parton jets and soft hadron spectra, Z. Phys. C 15 (1982) 325.ADSGoogle Scholar
  27. [27]
    Y.L. Dokshitzer, V.S. Fadin and V.A. Khoze, On the sensitivity of the inclusive distributions in parton jets to the coherence effects in QCD gluon cascades, Z. Phys. C 18 (1983) 37 [SPIRES].ADSGoogle Scholar
  28. [28]
    I.M. Dremin, C.S. Lam and V.A. Nechitailo, High order perturbative QCD approach to multiplicity distributions of quark and gluon jets, Phys. Rev. D 61 (2000) 074020 [hep-ph/9907487] [SPIRES].ADSGoogle Scholar
  29. [29]
    R.P. Ramos, Medium-modified evolution of multiparticle production in jets in heavy-ion collisions, J. Phys. G 36 (2009) 105006 [arXiv:0811.2934] [SPIRES].ADSGoogle Scholar
  30. [30]
    M.-A. Sanchis-Lozano, Prospects of searching for (un) particles from Hidden Sectors using rapidity correlations in multiparticle production at the LHC, Int. J. Mod. Phys. A 24 (2009) 4529 [arXiv:0812.2397] [SPIRES].ADSGoogle Scholar
  31. [31]
    CDF collaboration, T. Aaltonen et al., Two-particle momentum correlations in jets produced in \( p\bar{p} \) collisions ats = 1.96TeV, Phys. Rev. D 77 (2008) 092001 [arXiv:0802.3182] [SPIRES].ADSGoogle Scholar
  32. [32]
    Z. Koba, H.B. Nielsen and P. Olesen, Scaling of multiplicity distributions in high-energy hadron collisions, Nucl. Phys. B 40 (1972) 317 [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].ADSGoogle Scholar
  34. [34]
    M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [SPIRES].ADSGoogle Scholar
  35. [35]
    M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Redamy Pérez-Ramos
    • 1
  • Vincent Mathieu
    • 1
  • Miguel-Angel Sanchis-Lozano
    • 1
  1. 1.Departament de Física Teòrica and IFICUniversitat de València — CSICBurjassotSpain

Personalised recommendations