Advertisement

Compact hyperbolic extra dimension: a M-theory solution and its implications for the LHC

  • Domenico Orlando
  • Seong Chan Park
Open Access
Article

Abstract

We study M-theory solutions involving compact hyperbolic spaces. The combination of a gap à la Randall-Sundrum and the topology of an internal Riemann surface allows a geometrical solution to the hierarchy problem that does not require light Kaluza-Klein modes. We comment on the consequences of such a compactification for lhc physics.

Keywords

Strings and branes phenomenology 

References

  1. [1]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].ADSGoogle Scholar
  2. [2]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to aFermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].ADSGoogle Scholar
  3. [3]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  4. [4]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    C. Csáki, C. Grojean and H. Murayama, Standard Model Higgs from Higher Dimensional Gauge Fields, Phys. Rev. D 67 (2003) 085012 [hep-ph/0210133] [SPIRES].ADSGoogle Scholar
  8. [8]
    C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    C. Csáki, TASI lectures on extra dimensions and branes, hep-ph/0404096 [SPIRES].
  10. [10]
    A. Kehagias and J.G. Russo, Hyperbolic spaces in string and M-theory, JHEP 07 (2000) 027 [hep-th/0003281] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    J.P. Gauntlett, N. Kim and D. Waldram, M-fivebranes wrapped on supersymmetric cycles, Phys. Rev. D 63 (2001) 126001 [hep-th/0012195] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    N. Kaloper, J. March-Russell, G.D. Starkman and M. Trodden, Compact hyperbolic extra dimensions: Branes, Kaluza-Klein modes and cosmology, Phys. Rev. Lett. 85 (2000) 928 [hep-ph/0002001] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  13. [13]
    C.-M. Chen, P.-M. Ho, I.P. Neupane, N. Ohta and J.E. Wang, Hyperbolic space cosmologies, JHEP 10 (2003) 058 [hep-th/0306291] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    I.P. Neupane, Accelerating cosmologies from exponential potentials, Class. Quant. Grav. 21 (2004) 4383 [hep-th/0311071] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  15. [15]
    D. Orlando, M-theory compactifications on hyperbolic spaces, Fortsch. Phys. 55 (2007) 793 [hep-th/0702013] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    D. Orlando, String theory: Exact solutions, marginal deformations and hyperbolic spaces, Fortsch. Phys. 55 (2007) 161 [hep-th/0610284] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    E. Silverstein, Simple de Sitter Solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    M.R. Douglas and R. Kallosh, Compactification on negatively curved manifolds, JHEP 06 (2010) 004 [arXiv:1001.4008] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    B. Greene, D. Kabat, J. Levin and D. Thurston, A bulk inflaton from large volume extra dimensions, arXiv:1001.1423 [SPIRES].
  20. [20]
    H. M. Farkas and I. Kra, Riemann surfaces, Springer-Verlag, New York, U.S.A. (1980).MATHGoogle Scholar
  21. [21]
    W. Thurston, The Geometry and Topology of Three Manifolds, Princeton University Lecture Notes, Princeton U.S.A. (1978).Google Scholar
  22. [22]
    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in 11 dimensions, Phys. Lett. B 76 (1978) 409 [SPIRES].ADSGoogle Scholar
  23. [23]
    P.G.O. Freund and M.A. Rubin, Dynamics of Dimensional Reduction, Phys. Lett. B 97 (1980) 233 [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    M. J. Duff and C. N. Pope, Kaluza-Klein Supergravity and the Seven Sphere, in Super-symmetry and Supergravity 82, Ferrara, Taylor and van Nieuwenhuizen eds., World Scientific (1983).Google Scholar
  25. [25]
    M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged maximally extended supergravity in seven-dimensions, Phys. Lett. B 143 (1984) 103 [SPIRES].ADSGoogle Scholar
  26. [26]
    M.J. Duff, P.K. Townsend and P. van Nieuwenhuizen, Spontaneous compactification of supergravity on the three-sphere, Phys. Lett. B 122 (1983) 232 [SPIRES].ADSGoogle Scholar
  27. [27]
    P.K. Townsend and P. van Nieuwenhuizen, Gauged seven-dimensional supergravity, Phys. Lett. B 125 (1983) 41 [SPIRES].ADSGoogle Scholar
  28. [28]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  29. [29]
    I. Antoniadis, A Possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].ADSGoogle Scholar
  31. [31]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [SPIRES].ADSGoogle Scholar
  32. [32]
    S.C. Park and J. Shu, Split-UED and Dark Matter, Phys. Rev. D 79 (2009) 091702 [arXiv:0901.0720] [SPIRES].ADSGoogle Scholar
  33. [33]
    G. ’t Hooft, Graviton Dominance in Ultrahigh-Energy Scattering, Phys. Lett. B 198 (1987) 61 [SPIRES]. MathSciNetADSGoogle Scholar
  34. [34]
    T. Banks and W. Fischler, A model for high energy scattering in quantum gravity, hep-th/9906038 [SPIRES].
  35. [35]
    S.B. Giddings and S.D. Thomas, High energy colliders as black hole factories: The end of short distance physics, Phys. Rev. D 65 (2002) 056010 [hep-ph/0106219] [SPIRES].ADSGoogle Scholar
  36. [36]
    S. Dimopoulos and G.L. Landsberg, Black Holes at the LHC, Phys. Rev. Lett. 87 (2001) 161602 [hep-ph/0106295] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    H. Yoshino and Y. Nambu, Black hole formation in the grazing collision of high-energy particles, Phys. Rev. D 67 (2003) 024009 [gr-qc/0209003] [SPIRES].ADSGoogle Scholar
  39. [39]
    D. Ida, K.-y. Oda and S.C. Park, Rotating black holes at future colliders: Greybody factors for brane fields, Phys. Rev. D 67 (2003) 064025 [hep-th/0212108] [SPIRES].ADSGoogle Scholar
  40. [40]
    D. Ida, K.-y. Oda and S.C. Park, Rotating black holes at future colliders. II: Anisotropic scalar field emission, Phys. Rev. D 71 (2005) 124039 [hep-th/0503052] [SPIRES].ADSGoogle Scholar
  41. [41]
    D. Ida, K.-y. Oda and S.C. Park, Rotating black holes at future colliders. III: Determination of black hole evolution, Phys. Rev. D 73 (2006) 124022 [hep-th/0602188] [SPIRES].ADSGoogle Scholar
  42. [42]
    C.M. Harris and P. Kanti, Hawking radiation from a (4+n)-dimensional rotating black hole, Phys. Lett. B 633 (2006) 106 [hep-th/0503010] [SPIRES].ADSGoogle Scholar
  43. [43]
    M. Casals, P. Kanti and E. Winstanley, Brane decay of a (4+n)-dimensional rotating black hole. II: Spin-1 particles, JHEP 02 (2006) 051 [hep-th/0511163] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    M. Casals, S.R. Dolan, P. Kanti and E. Winstanley, Brane decay of a (4+n)-dimensional rotating black hole. III: Spin-1/2 particles, JHEP 03 (2007) 019 [hep-th/0608193] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    D.-C. Dai et al., BlackMax: A black-hole event generator with rotation, recoil, split branes and brane tension, Phys. Rev. D 77 (2008) 076007 [arXiv:0711.3012] [SPIRES].ADSGoogle Scholar
  46. [46]
    J.A. Frost et al., Phenomenology of Production and Decay of Spinning Extra-Dimensional Black Holes at Hadron Colliders, JHEP 10 (2009) 014 [arXiv:0904.0979] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    D. Mumford, A remark on mahler’s compactness theorem, P. Am. Math. Soc. 28 (1971) 289.MATHMathSciNetGoogle Scholar
  48. [48]
    F.-R. Chang, On the diameters of compact riemann surfaces, P. Am. Math. Soc. 65 (1977) 274.MATHCrossRefGoogle Scholar
  49. [49]
    G. Mostow, Quasi-conformal mappings in n-space and the rigidity of the hyperbolic space forms, Publ. Math. IHES 34 (1968) 53.MATHMathSciNetGoogle Scholar
  50. [50]
    P. Sarnak, The arithmetic and geometry of some hyperbolic three manifolds, Acta Math. 151 (1983) 253.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Institute for the Physics and Mathematics of the Universe (IPMU)The University of TokyoKashiwa CityJapan

Personalised recommendations