Skip to main content
Log in

A distinguished vacuum state for a quantum field in a curved spacetime: formalism, features, and cosmology

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We define a distinguished “ground state” or “vacuum” for a free scalar quantum field in a globally hyperbolic region of an arbitrarily curved spacetime. Our prescription is motivated by the recent construction [1, 2] of a quantum field theory on a background causal set using only knowledge of the retarded Green’s function. We generalize that construction to continuum spacetimes and find that it yields a distinguished vacuum or ground state for a non-interacting, massive or massless scalar field. This state is defined for all compact regions and for many noncompact ones. In a static spacetime we find that our vacuum coincides with the usual ground state. We determine it also for a radiation-filled, spatially homogeneous and isotropic cosmos, and show that the super-horizon correlations are approximately the same as those of a thermal state. Finally, we illustrate the inherent non-locality of our prescription with the example of a spacetime which sandwiches a region with curvature in-between flat initial and final regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Johnston, Feynman Propagator for a Free Scalar Field on a Causal Set, Phys. Rev. Lett. 103 (2009) 180401 [arXiv:0909.0944] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. R.D. Sorkin, Scalar Field Theory on a Causal Set in Histories Form, J. Phys. Conf. Ser. 306 (2011) 012017 [arXiv:1107.0698] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206-206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. J. Bisognano and E. Wichmann, On the Duality Condition for a Hermitian Scalar Field, J. Math. Phys. 16 (1975) 985 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. W. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

    ADS  Google Scholar 

  6. V.F. Mukhanov, H. Feldman and R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept. 215 (1992) 203 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. B. Allen, Vacuum States in de Sitter Space, Phys. Rev. D 32 (1985) 3136 [INSPIRE].

    ADS  Google Scholar 

  8. R. Wald, Quantum field theory in curved spacetime and black hole thermodynamics, Chicago lectures in physics, University of Chicago Press, Chicago U.S.A. (1994).

    Google Scholar 

  9. R.M. Wald, The Formulation of Quantum Field Theory in Curved Spacetime, arXiv:0907.0416 [INSPIRE].

  10. F. Dowker, S. Johnston and R.D. Sorkin, Hilbert Spaces from Path Integrals, J. Phys. A 43 (2010) 275302 [arXiv:1002.0589] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. D. Sorkin, Rafael, Quantum mechanics as quantum measure theory, Mod. Phys. Lett. A 9 (1994) 3119 [gr-qc/9401003] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. R.D. Sorkin, Toward afundamental theorem of quantal measure theory’, arXiv:1104.0997 [INSPIRE].

  13. J.B. Hartle, Space-time quantum mechanics and the quantum mechanics of space-time, gr-qc/9304006 [INSPIRE].

  14. A. Ashtekar and A. Magnon-Ashtekar, A curiosity concerning the role of coherent states in quantum field theory, Pramana 15 (1980) 107.

    Article  ADS  Google Scholar 

  15. M. Reed and B. Simon, I: Functional Analysis, Volume 1 (Methods of Modern Mathematical Physics) (vol 1), Academic Press (1981).

  16. C.J. Fewster and R. Verch, On a Recent Construction ofVacuum-likeQuantum Field States in Curved Spacetime, arXiv:1206.1562 [INSPIRE].

  17. N. Afshordi et al., A Ground State for the Causal Diamond in 2 Dimensions, arXiv:1207.7101 [INSPIRE].

  18. N. Afshordi, S. Aslanbeigi, M. Buck, F. Dowker and R. Sorkin, in preparation.

  19. S. Fulling, Remarks on positive frequency and hamiltonians in expanding universes, Gen. Rel. Grav. 10 (1979) 807 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. C. Dappiaggi, T.-P. Hack and N. Pinamonti, Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes, Annales Henri Poincaré 12 (2011) 1449 [arXiv:1009.5179] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. N. Birrell and P. Davies, Quantum Fields in Curved Space, Cambridge University Press, Cambridge U.K. (1982).

    Book  MATH  Google Scholar 

  22. F.W. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, New York U.S.A. (2010).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siavash Aslanbeigi.

Additional information

ArXiv ePrint: 1205.1296

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afshordi, N., Aslanbeigi, S. & Sorkin, R.D. A distinguished vacuum state for a quantum field in a curved spacetime: formalism, features, and cosmology. J. High Energ. Phys. 2012, 137 (2012). https://doi.org/10.1007/JHEP08(2012)137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)137

Keywords

Navigation