Skip to main content
Log in

The sphaleron rate through the electroweak cross-over

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Using lattice simulations, we measure the sphaleron rate in the Standard Model as a function of temperature through the electroweak cross-over, for the Higgs masses m H  = 115 and m H  = 160 GeV. We pay special attention to the shutting off of the baryon rate as the temperature is lowered. This quantity enters computations of Baryogenesis via Leptogenesis, where non-zero lepton number is converted into non-zero baryon number by equilibrium sphaleron transitions. Combining existing numerical methods applicable in the symmetric and broken electroweak phases, we find the temperature dependence of the sphaleron rate at very high temperature, through the electroweak cross-over transition, and deep into the broken phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    Article  ADS  Google Scholar 

  2. V. Rubakov and M. Shaposhnikov, Electroweak baryon number nonconservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493 [Phys. Usp. 39 (1996) 461] [hep-ph/9603208] [INSPIRE].

    Article  Google Scholar 

  3. G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. D 18 (1978) 2199] [INSPIRE].

    ADS  Google Scholar 

  4. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at m H m W ?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].

    Article  ADS  Google Scholar 

  5. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, The electroweak phase transition: a nonperturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020] [INSPIRE].

    Article  ADS  Google Scholar 

  6. K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine and M.E. Shaposhnikov, The universality class of the electroweak theory, Nucl. Phys. B 532 (1998) 283 [hep-lat/9805013] [INSPIRE].

    Article  ADS  Google Scholar 

  7. F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys. Rev. Lett. 82 (1999) 21 [hep-ph/9809291] [INSPIRE].

    Article  ADS  Google Scholar 

  8. Y. Aoki, F. Csikor, Z. Fodor and A. Ukawa, The endpoint of the first order phase transition of the SU(2) gauge Higgs model on a four-dimensional isotropic lattice, Phys. Rev. D 60 (1999) 013001 [hep-lat/9901021] [INSPIRE].

    ADS  Google Scholar 

  9. F.R. Klinkhamer and N. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE].

    ADS  Google Scholar 

  10. O. Philipsen, The sphaleron rate in thesymmetricelectroweak phase, Phys. Lett. B 358 (1995) 210 [hep-ph/9506478] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Ambjørn and A. Krasnitz, The classical sphaleron transition rate exists and is equal to 1.1(α w T)4, Phys. Lett. B 362 (1995) 97 [hep-ph/9508202] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Ambjørn and A. Krasnitz, Improved determination of the classical sphaleron transition rate, Nucl. Phys. B 506 (1997) 387 [hep-ph/9705380] [INSPIRE].

    Article  ADS  Google Scholar 

  13. G.D. Moore and K. Rummukainen, Classical sphaleron rate on fine lattices, Phys. Rev. D 61 (2000) 105008 [hep-ph/9906259] [INSPIRE].

    ADS  Google Scholar 

  14. P.B. Arnold, D. Son and L.G. Yaffe, The hot baryon violation rate is \(O\left( {\alpha_w^5{T^4}} \right)\), Phys. Rev. D 55 (1997) 6264 [hep-ph/9609481] [INSPIRE].

    ADS  Google Scholar 

  15. P.B. Arnold, Hot B violation, the lattice and hard thermal loops, Phys. Rev. D 55 (1997) 7781 [hep-ph/9701393] [INSPIRE].

    ADS  Google Scholar 

  16. G.D. Moore, C.-R. Hu and B. Müller, Chern-Simons number diffusion with hard thermal loops, Phys. Rev. D 58 (1998) 045001 [hep-ph/9710436] [INSPIRE].

    ADS  Google Scholar 

  17. D. Bödeker, G.D. Moore and K. Rummukainen, Chern-Simons number diffusion and hard thermal loops on the lattice, Phys. Rev. D 61 (2000) 056003 [hep-ph/9907545] [INSPIRE].

    ADS  Google Scholar 

  18. D. Bödeker, On the effective dynamics of soft non-Abelian gauge fields at finite temperature, Phys. Lett. B 426 (1998) 351 [hep-ph/9801430] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G.D. Moore, The sphaleron rate: Bodekers leading log, Nucl. Phys. B 568 (2000) 367 [hep-ph/9810313] [INSPIRE].

    Article  ADS  Google Scholar 

  20. P.B. Arnold and L.G. Yaffe, The non-Abelian Debye screening length beyond leading order, Phys. Rev. D 52 (1995) 7208 [hep-ph/9508280] [INSPIRE].

    ADS  Google Scholar 

  21. P.B. Arnold and L.G. Yaffe, High temperature color conductivity at next-to-leading log order, Phys. Rev. D 62 (2000) 125014 [hep-ph/9912306] [INSPIRE].

    ADS  Google Scholar 

  22. W.-H. Tang and J. Smit, Chern-Simons diffusion rate near the electroweak phase transition for m H m W , Nucl. Phys. B 482 (1996) 265 [hep-lat/9605016] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G.D. Moore, Sphaleron rate in the symmetric electroweak phase, Phys. Rev. D 62 (2000) 085011 [hep-ph/0001216] [INSPIRE].

    ADS  Google Scholar 

  24. G.D. Moore, Measuring the broken phase sphaleron rate nonperturbatively, Phys. Rev. D 59 (1999) 014503 [hep-ph/9805264] [INSPIRE].

    ADS  Google Scholar 

  25. G.D. Moore, A nonperturbative measurement of the broken phase sphaleron rate, Phys. Lett. B 439 (1998) 357 [hep-ph/9801204] [INSPIRE].

    Article  ADS  Google Scholar 

  26. H. Shanahan and A. Davis, The Chern-Simons number as an order parameter: classical sphaleron transitions for SU(2) Higgs field theories for a Higgs mass approximately equal to 120 GeV, Phys. Lett. B 431 (1998) 135 [hep-ph/9804203] [INSPIRE].

    Article  ADS  Google Scholar 

  27. Y. Burnier, M. Laine and M. Shaposhnikov, Baryon and lepton number violation rates across the electroweak crossover, JCAP 02 (2006) 007 [hep-ph/0511246] [INSPIRE].

    Article  ADS  Google Scholar 

  28. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  29. A.G. Cohen, D. Kaplan and A. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Luty, Baryogenesis via leptogenesis, Phys. Rev. D 45 (1992) 455 [INSPIRE].

    ADS  Google Scholar 

  32. A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96 (1980) 289 [INSPIRE].

    Article  ADS  Google Scholar 

  33. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the standard model, Nucl. Phys. B 458 (1996) 90 [hep-ph/9508379] [INSPIRE].

    Article  ADS  Google Scholar 

  34. K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, 3D physics and the electroweak phase transition: perturbation theory, Nucl. Phys. B 425 (1994) 67 [hep-ph/9404201] [INSPIRE].

    Article  ADS  Google Scholar 

  35. K. Farakos, K. Kajantie, K. Rummukainen and M. Shaposhnikov, 3D physics and the electroweak phase transition: a framework for lattice Monte Carlo analysis, Nucl. Phys. B 442 (1995) 317 [hep-lat/9412091] [INSPIRE].

    ADS  Google Scholar 

  36. P.H. Ginsparg, First order and second order phase transitions in gauge theories at finite temperature, Nucl. Phys. B 170 (1980) 388 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Appelquist and R.D. Pisarski, High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics, Phys. Rev. D 23 (1981) 2305 [INSPIRE].

    ADS  Google Scholar 

  38. S. Nadkarni, Dimensional reduction in hot QCD, Phys. Rev. D 27 (1983) 917 [INSPIRE].

    ADS  Google Scholar 

  39. N. Landsman, Limitations to dimensional reduction at high temperature, Nucl. Phys. B 322 (1989) 498 [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Jakovac, K. Kajantie and A. Patkos, A hierarchy of effective field theories of hot electroweak matter, Phys. Rev. D 49 (1994) 6810 [hep-ph/9312355] [INSPIRE].

    ADS  Google Scholar 

  41. E. Braaten and A. Nieto, Effective field theory approach to high temperature thermodynamics, Phys. Rev. D 51 (1995) 6990 [hep-ph/9501375] [INSPIRE].

    ADS  Google Scholar 

  42. M. Laine, Exact relation of lattice and continuum parameters in three-dimensional SU(2) + Higgs theories, Nucl. Phys. B 451 (1995) 484 [hep-lat/9504001] [INSPIRE].

    Article  ADS  Google Scholar 

  43. G.D. Moore, O(a) errors in 3D SU(N) Higgs theories, Nucl. Phys. B 523 (1998) 569 [hep-lat/9709053] [INSPIRE].

    Article  ADS  Google Scholar 

  44. D. Bödeker, L. McLerran and A. Smilga, Really computing nonperturbative real time correlation functions, Phys. Rev D 52 (1995) 4675 [hep-th/9504123] [INSPIRE].

    ADS  Google Scholar 

  45. P. Arnold, D. Son and L.G. Yaffe, The hot baryon violation rate is \(O\left( {\alpha_w^5{T^4}} \right)\), Phys. Rev. D 55 (1997) 6264 [hep-ph/9609481] [INSPIRE].

    ADS  Google Scholar 

  46. E. Braaten and R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis, Nucl. Phys. B 337 (1990) 569 [INSPIRE].

    Article  ADS  Google Scholar 

  47. J. Frenkel and J. Taylor, High temperature limit of thermal QCD, Nucl. Phys. B 334 (1990) 199 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. J. Taylor and S. Wong, The effective action of hard thermal loops in QCD, Nucl. Phys. B 346 (1990) 115 [INSPIRE].

    Article  ADS  Google Scholar 

  49. J. Frenkel and J. Taylor, Hard thermal QCD, forward scattering and effective actions, Nucl. Phys. B 374 (1992) 156 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. E. Braaten and R.D. Pisarski, Simple effective Lagrangian for hard thermal loops, Phys. Rev. D 45 (1992) 1827 [INSPIRE].

    ADS  Google Scholar 

  51. J.P. Blaizot and E. Iancu, Kinetic equations for long wavelength excitations of the quark-gluon plasma, Phys. Rev. Lett. 70 (1993) 3376 [hep-ph/9301236] [INSPIRE].

    Article  ADS  Google Scholar 

  52. J.-P. Blaizot and E. Iancu, Soft collective excitations in hot gauge theories, Nucl. Phys. B 417 (1994) 608 [hep-ph/9306294] [INSPIRE].

    Article  ADS  Google Scholar 

  53. V.P. Nair, Hard thermal loops, gauged WZNW action and the energy of hot quark-gluon plasma, Phys. Rev. D 48 (1993) 3432 [hep-ph/9307326] [INSPIRE].

    ADS  Google Scholar 

  54. G.D. Moore and K. Rummukainen, Electroweak bubble nucleation, nonperturbatively, Phys. Rev. D 63 (2001) 045002 [hep-ph/0009132] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela D’Onofrio.

Additional information

ArXiv ePrint: 1207.0685

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Onofrio, M., Rummukainen, K. & Tranberg, A. The sphaleron rate through the electroweak cross-over. J. High Energ. Phys. 2012, 123 (2012). https://doi.org/10.1007/JHEP08(2012)123

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)123

Keywords

Navigation