Skip to main content
Log in

Semi-analytic results for quasi-normal frequencies

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The last decade has seen considerable interest in the quasi-normal frequencies [QNFs] of black holes (and even wormholes), both asymptotically flat and with cosmological horizons. There is wide agreement that the QNFs are often of the form ω n = (offset) + in (gap), though some authors have encountered situations where this behaviour seems to fail. To get a better understanding of the general situation we consider a semi-analytic model based on a piecewise Eckart (Pöschl-Teller) potential, allowing for different heights and different rates of exponential fall off in the two asymptotic directions. This model is sufficiently general to capture and display key features of the black hole QNFs while simultaneously being analytically tractable, at least for asymptotically large imaginary parts of the QNFs.

We shall derive an appropriate “quantization condition” for the asymptotic QNFs, and extract as much analytic information as possible. In particular, we shall explicitly verify that the (offset) + in (gap) behaviour is common but not universal, with this behaviour failing unless the ratio of rates of exponential falloff on the two sides of the potential is a rational number. (This is “common but not universal” in the sense that the rational numbers are dense in the reals.) We argue that this behaviour is likely to persist for black holes with cosmological horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Chandrasekhar and S.L. Detweiler, The quasi-normal modes of the Schwarzschild black hole, Proc. Roy. Soc. Lond. A 344 (1975) 441 [SPIRES].

    ADS  Google Scholar 

  2. K.D. Kokkotas and B.G. Schmidt, Quasi-normal modes of stars and black holes, Living Rev. Rel. 2 (1999) 2 [gr-qc/9909058] [SPIRES].

    MathSciNet  Google Scholar 

  3. H.P. Nollert, Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars, Class. Quant. Grav. 16 (1999) R159 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. O. Dreyer, Quasinormal modes, the area spectrum and black hole entropy, Phys. Rev. Lett. 90 (2003) 081301 [gr-qc/0211076] [SPIRES].

    Article  ADS  Google Scholar 

  6. J. Natario and R. Schiappa, On the classification of asymptotic quasinormal frequencies for d-dimensional black holes and quantum gravity, Adv. Theor. Math. Phys. 8 (2004) 1001 [hep-th/0411267] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  7. C. Eckart, The penetration of a potential barrier by electrons, Phys. Rev. 35 (1930) 1303 [SPIRES].

    Article  ADS  Google Scholar 

  8. G. Pöschl and E. Teller, Bemerkungen zur quantenmechanik des anharmonischen, Z. Phys. 83 (1933) 143.

    Article  MATH  ADS  Google Scholar 

  9. P.M. Morse and H. Feshbach, Methods of theoretical physics, McGraw-Hill, New York U.S.A. (1953).

    MATH  Google Scholar 

  10. P. Boonserm, Rigorous bounds on transmission, reflection, and bogoliubov coefficients, P h.D. Thesis, Victoria University of Wellington, Wellington New Zeland (2009) [math-ph/0907.0045].

  11. P. Boonserm amd M. Visser, Transmission resonances, quasi-normal modes and quasi-normal frequencies: key analytic results, arXiv:1005.4483.

  12. V. Ferrari and B. Mashhoon, New approach to the quasinormal modes of a black hole, Phys. Rev. D 30 (1984) 295 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. S. Iyer and C.M. Will, Black hole normal modes: a WKB approach. 1. foundations and application of a higher order wkb analysis of potential barrier scattering, Phys. Rev. D 35 (1987) 3621 [SPIRES].

    ADS  Google Scholar 

  14. C.M. Will and J.W. Guinn, Tuneling near the peaks of potential barriers: consequences of higher-order Wentzel-Kramers-Brillouin corrections, Phys. Rev. A 37 (1988) 3674.

    ADS  Google Scholar 

  15. J.W. Guinn, C.M. Will, Y. Kojima and B.F. Schutz, High overtone normal modes of Schwarzschild black holes, Class. Quant. Grav. 7 (1990) L47 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. R.A. Konoplya, Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach, Phys. Rev. D 68 (2003) 024018 [gr-qc/0303052] [SPIRES].

    ADS  Google Scholar 

  17. A.J.M. Medved, D. Martin and M. Visser, Dirty black holes: quasinormal modes, Class. Quant. Grav. 21 (2004) 1393 [gr-qc/0310009] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. A.J.M. Medved, D. Martin and M. Visser, Dirty black holes: quasinormal modes for squeezed horizons, Class. Quant. Grav. 21 (2004) 2393 [gr-qc/0310097] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. T. Padmanabhan, Quasi normal modes: a simple derivation of the level spacing of the frequencies, Class. Quant. Grav. 21 (2004) L1 [gr-qc/0310027] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. T.R. Choudhury and T. Padmanabhan, Quasi normal modes in Schwarzschild-deSitter spacetime: a simple derivation of the level spacing of the frequencies, Phys. Rev. D 69 (2004) 064033 [gr-qc/0311064] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. H.R. Beyer, On the completeness of the quasinormal modes of the Poeschl-Teller potential, Commun. Math. Phys. 204 (1999) 397 [gr-qc/9803034] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. N. Andersson, A numerically accurate investigation of black hole normal modes, P. Roy. Soc. Lond. A. Mat. A 439 (1992) 47.

    Article  ADS  Google Scholar 

  23. N. Andersson and C.J. Howls, The asymptotic quasinormal mode spectrum of non-rotating black holes, Class. Quant. Grav. 21 (2004) 1623 [gr-qc/0307020] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. E.W. Leaver, An Analytic representation for the quasi normal modes of Kerr black holes, Proc. Roy. Soc. Lond. A 402 (1985) 285 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. E.W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D 34 (1986) 384 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. E.W. Leaver, Quasinormal modes of Reissner-Nordström black holes, Phys. Rev. D 41 (1990) 2986 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. L. Motl, An analytical computation of asymptotic Schwarzschild quasinormal frequencies, Adv. Theor. Math. Phys. 6 (2003) 1135 [gr-qc/0212096] [SPIRES].

    MathSciNet  Google Scholar 

  28. L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies, Adv. Theor. Math. Phys. 7 (2003) 307 [hep-th/0301173] [SPIRES].

    MathSciNet  Google Scholar 

  29. S. Das and S. Shankaranarayanan, High frequency quasi-normal modes for black-holes with generic singularities, Class. Quant. Grav. 22 (2005) L7 [hep-th/0410209] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. A. Ghosh, S. Shankaranarayanan and S. Das, High frequency quasi-normal modes for black holes with generic singularities. II: Asymptotically non-flat spacetimes, Class. Quant. Grav. 23 (2006) 1851 [hep-th/0510186] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. J.S.F. Chan and R.B. Mann, Scalar wave falloff in asymptotically anti-de Sitter backgrounds, Phys. Rev. D 55 (1997) 7546 [gr-qc/9612026] [SPIRES].

    ADS  Google Scholar 

  32. J.S.F. Chan and R.B. Mann, Scalar wave falloff in topological black hole backgrounds, Phys. Rev. D 59 (1999) 064025 [SPIRES].

    ADS  Google Scholar 

  33. G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. B. Wang, C.-Y. Lin and E. Abdalla, Quasinormal modes of Reissner-Nordström anti-de Sitter black holes, Phys. Lett. B 481 (2000) 79 [hep-th/0003295] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. B. Wang, C. Molina and E. Abdalla, Evolving of a massless scalar field in Reissner-Nordström Anti-de Sitter spacetimes, Phys. Rev. D 63 (2001) 084001 [hep-th/0005143] [SPIRES].

    ADS  Google Scholar 

  36. J.-M. Zhu, B. Wang and E. Abdalla, Object picture of quasinormal ringing on the background of small Schwarzschild anti-de Sitter black holes, Phys. Rev. D 63 (2001) 124004 [hep-th/0101133] [SPIRES].

    ADS  Google Scholar 

  37. V. Cardoso and J.P.S. Lemos, Quasi-normal modes of Schwarzschild anti-de Sitter black holes: electromagnetic and gravitational perturbations, Phys. Rev. D 64 (2001) 084017 [gr-qc/0105103] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. B. Wang, E. Abdalla and R.B. Mann, Scalar wave propagation in topological black hole backgrounds, Phys. Rev. D 65 (2002) 084006 [hep-th/0107243] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. D.-P. Du, B. Wang and R.-K. Su, Quasinormal modes in pure de Sitter spacetimes, Phys. Rev. D 70 (2004) 064024 [hep-th/0404047] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. B. Wang, C.-Y. Lin and C. Molina, Quasinormal behavior of massless scalar field perturbation in Reissner-Nordström anti-de Sitter spacetimes, Phys. Rev. D 70 (2004) 064025 [hep-th/0407024] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. V. Suneeta, Quasinormal modes for the SdS black hole: an analytical approximation scheme, Phys. Rev. D 68 (2003) 024020 [gr-qc/0303114] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Visser.

Additional information

ArXiv ePrint: 1004.2539

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skakala, J., Visser, M. Semi-analytic results for quasi-normal frequencies. J. High Energ. Phys. 2010, 61 (2010). https://doi.org/10.1007/JHEP08(2010)061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)061

Keywords

Navigation