Skip to main content
Log in

Phenomenological aspects of invisibly broad Higgs model from extra-dimension

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

An Erratum to this article was published on 17 November 2010

Abstract

We study a simple five-dimensional extension of the Standard Model, compactified ona flat line segment in which there propagate Higgs and gauge bosons of the Standard Model. We impose a Dirichlet boundary condition on the Higgs field to realize its vacuum expectation value. Since a flat Nambu-Goldstone zero-mode of the bulk Higgs is eliminated by the Dirichlet boundary condition, a superposition of the Higgs Kaluza-Klein modes play the role of the Nambu-Goldstone boson except at the boundaries. We discuss phenomenology of our model at the LHC, namely the top Yukawa deviation and the production and invisibly rapid decay of the physical Higgs field, as well as the constraints from the electroweak precision measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].

    ADS  Google Scholar 

  2. T. Appelquist and H.-U. Yee, Universal extra dimensions and the Higgs boson mass, Phys. Rev. D 67 (2003) 055002 [hep-ph/0211023] [SPIRES].

    ADS  Google Scholar 

  3. I. Gogoladze and C. Macesanu, Precision electroweak constraints on universal extra dimensions revisited, Phys. Rev. D 74 (2006) 093012 [hep-ph/0605207] [SPIRES].

    ADS  Google Scholar 

  4. P. Nath and M. Yamaguchi, Effects of extra space-time dimensions on the Fermi constant, Phys. Rev. D 60 (1999) 116004 [hep-ph/9902323] [SPIRES].

    ADS  Google Scholar 

  5. M. Masip and A. Pomarol, Effects of SM Kaluza-Klein excitations on electroweak observables, Phys. Rev. D 60 (1999) 096005 [hep-ph/9902467] [SPIRES].

    ADS  Google Scholar 

  6. T.G. Rizzo and J.D. Wells, Electroweak precision measurements and collider probes of the Standard Model with large extra dimensions, Phys. Rev. D 61 (2000) 016007 [hep-ph/9906234] [SPIRES].

    ADS  Google Scholar 

  7. A. Strumia, Bounds on Kaluza-Klein excitations of the SM vector bosons from electroweak tests, Phys. Lett. B 466 (1999) 107 [hep-ph/9906266] [SPIRES].

    ADS  Google Scholar 

  8. C.D. Carone, Electroweak constraints on extended models with extra dimensions, Phys. Rev. D 61 (2000) 015008 [hep-ph/9907362] [SPIRES];

    ADS  Google Scholar 

  9. K.-m. Cheung and G.L. Landsberg, Kaluza-Klein states of the standard model gauge bosons: constraints from high energy experiments, Phys. Rev. D 65 (2002) 076003 [hep-ph/0110346] [SPIRES].

    ADS  Google Scholar 

  10. N. Haba, K.-y. Oda and R. Takahashi, Top Yukawa deviation in extra dimension, Nucl. Phys. B 821 (2009) 74 [Erratum ibid. B 824 (2010) 331] [arXiv:0904.3813] [SPIRES].

    Article  ADS  Google Scholar 

  11. N. Haba, K.-y. Oda and R. Takahashi, Diagonal Kaluza-Klein expansion under brane localized potential, arXiv:0910.4528 [SPIRES].

  12. N. Haba, K.-y. Oda and R. Takahashi, Invisible Higgs consistent with electroweak data, arXiv:0910.3356 [SPIRES].

  13. Y. Hosotani and Y. Kobayashi, Yukawa couplings and effective interactions in gauge-Higgs unification, Phys. Lett. B 674 (2009) 192 [arXiv:0812.4782] [SPIRES].

    ADS  Google Scholar 

  14. M. Holthausen and R. Takahashi, GIMPs from extra dimensions, Phys. Lett. B 691 (2010) 56 [arXiv:0912.2262] [SPIRES].

    ADS  Google Scholar 

  15. L.J. Hall, H. Murayama and Y. Nomura, Wilson lines and symmetry breaking on orbifolds, Nucl. Phys. B 645 (2002) 85 [hep-th/0107245] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. R.S. Chivukula, D.A. Dicus and H.-J. He, Unitarity of compactified five dimensional Yang-Mills theory, Phys. Lett. B 525 (2002) 175 [hep-ph/0111016] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. R.S. Chivukula and H.-J. He, Unitarity of deconstructed five-dimensional Yang-Mills theory, Phys. Lett. B 532 (2002) 121 [hep-ph/0201164] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. Y. Abe, N. Haba, Y. Higashide, K. Kobayashi and M. Matsunaga, Unitarity in gauge symmetry breaking on orbifold, Prog. T heor. Phys. 109 (2003) 831 [hep-th/0302115] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. R.S. Chivukula, D.A. Dicus, H.-J. He and S. Nandi, Unitarity of the higher dimensional standard model, Phys. Lett. B 562 (2003) 109 [hep-ph/0302263] [SPIRES].

    ADS  Google Scholar 

  20. C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [SPIRES].

    ADS  Google Scholar 

  21. Y. Abe et al., 4D equivalence theorem and gauge symmetry on orbifold, Prog. T heor. Phys. 113 (2005) 199 [hep-th/0402146] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  22. N. Haba, Y. Sakamura and T. Yamashita, Weak boson scattering in gauge-Higgs unification, JHEP 07 (2009) 020 [arXiv:0904.3177] [SPIRES].

    Article  ADS  Google Scholar 

  23. N. Haba, Y. Sakamura and T. Yamashita, Tree-level unitarity in gauge-Higgs unification, JHEP 03 (2010) 069 [arXiv:0908.1042] [SPIRES].

    Article  ADS  Google Scholar 

  24. ATLAS collaborations, ATLAS detector and physics performance: technical design report. Volume 2, CERN/LHCC/99-15 (1999) [SPIRES].

  25. CMS collaboration, G.L. Bayatian et al., CMS technical design report. Volume II: physics performance, J. Phys. G 34 (2007) 995 [SPIRES].

    ADS  Google Scholar 

  26. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [SPIRES].

    Article  ADS  Google Scholar 

  27. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  28. D.C. Kennedy and B.W. Lynn, Electroweak radiative corrections with an effective Lagrangian: four fermion processes, Nucl. Phys. B 322 (1989) 1 [SPIRES].

    Article  ADS  Google Scholar 

  29. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  30. D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Phys. Rept. 453 (2007) 29 [hep-ph/0701197] [SPIRES].

    Article  ADS  Google Scholar 

  31. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [SPIRES].

    ADS  Google Scholar 

  32. A.J. Buras, A. Poschenrieder, M. Spranger and A. Weiler, The impact of universal extra dimensions on FCNC processes, hep-ph/0307202 [SPIRES].

  33. R. Mohanta and A.K. Giri, Study of FCNC mediated rare B s decays in a single universal extra dimension scenario, Phys. Rev. D 75 (2007) 035008 [hep-ph/0611068] [SPIRES].

    ADS  Google Scholar 

  34. P. Colangelo, F. De Fazio, R. Ferrandes and T.N. Pham, FCNC B s and Λ b transitions: standard model versus a single universal extra dimension scenario, Phys. Rev. D 77 (2008) 055019 [arXiv:0709.2817] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Takahashi.

Additional information

ArXiv ePrint: 1005.2306

An erratum to this article can be found at http://dx.doi.org/10.1007/JHEP11(2010)071

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haba, N., Oda, Ky. & Takahashi, R. Phenomenological aspects of invisibly broad Higgs model from extra-dimension. J. High Energ. Phys. 2010, 79 (2010). https://doi.org/10.1007/JHEP07(2010)079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)079

Keywords

Navigation