Perturbative analysis in higher-spin theories

  • V.E. Didenko
  • N.G. Misuna
  • M.A. Vasiliev
Open Access
Regular Article - Theoretical Physics


A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higherspin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.


Differential and Algebraic Geometry Higher Spin Gravity Higher Spin Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    E. Witten, Spacetime reconstruction, talk at the John Schwarz 60th birthday symposium,, California Institute of Technology, U.S.A. November 3-4 2001.
  6. [6]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  7. [7]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    R.G. Leigh and A.C. Petkou, Holography of the N = 1 higher spin theory on AdS 4, JHEP 06 (2003) 011 [hep-th/0304217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    S. Giombi and X. Yin, Higher spins in AdS and twistorial holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    N. Boulanger and P. Sundell, An action principle for Vasiliev’s four-dimensional higher-spin gravity, J. Phys. A 44 (2011) 495402 [arXiv:1102.2219] [INSPIRE].MathSciNetMATHGoogle Scholar
  13. [13]
    S. Giombi and I.R. Klebanov, One loop tests of higher spin AdS/CFT, JHEP 12 (2013) 068 [arXiv:1308.2337] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Beccaria and A.A. Tseytlin, Higher spins in AdS 5 at one loop: vacuum energy, boundary conformal anomalies and AdS/CFT, JHEP 11 (2014) 114 [arXiv:1410.3273] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Beccaria and A.A. Tseytlin, On higher spin partition functions, J. Phys. A 48 (2015) 275401 [arXiv:1503.08143] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  16. [16]
    N. Colombo and P. Sundell, Higher spin gravity amplitudes from zero-form charges, arXiv:1208.3880 [INSPIRE].
  17. [17]
    M.A. Vasiliev, Invariant functionals in higher-spin theory, arXiv:1504.07289 [INSPIRE].
  18. [18]
    M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, in The many faces of the superworld, M.A. Shifman ed., World Scientific, Singapore (2000), pg. 533 [hep-th/9910096] [INSPIRE].
  20. [20]
    M.A. Vasiliev, On conformal, SL(4, R) and Sp(8, R) symmetries of 4d massless fields, Nucl. Phys. B 793 (2008) 469 [arXiv:0707.1085] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    N. Boulanger, E. Sezgin and P. Sundell, 4D higher spin gravity with dynamical two-form as a Frobenius-Chern-Simons gauge theory, arXiv:1505.04957 [INSPIRE].
  22. [22]
    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS d, Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    E. Sezgin and P. Sundell, Analysis of higher spin field equations in four-dimensions, JHEP 07 (2002) 055 [hep-th/0205132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    N. Boulanger, P. Kessel, E.D. Skvortsov and M. Taronna, Higher spin interactions in four-dimensions: Vasiliev versus Fronsdal, J. Phys. A 49 (2016) 095402 [arXiv:1508.04139] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    V.E. Didenko, N.G. Misuna and M.A. Vasiliev, work in progress.Google Scholar
  26. [26]
    S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.I.E. Tamm Department of Theoretical Physics, Lebedev Physical InstituteMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations