Rapid thermal co-annihilation through bound states in QCD

  • Seyong Kim
  • M. Laine
Open Access
Regular Article - Theoretical Physics


The co-annihilation rate of heavy particles close to thermal equilibrium, which plays a role in many classic dark matter scenarios, can be “simulated” in QCD by considering the pair annihilation rate of a heavy quark and antiquark at a temperature of a few hundred MeV. We show that the so-called Sommerfeld factors, parameterizing the rate, can be defined and measured non-perturbatively within the NRQCD framework. Lattice measurements indicate a modest suppression in the octet channel, in reasonable agreement with perturbation theory, and a large enhancement in the singlet channel, much above the perturbative prediction. The additional enhancement is suggested to originate from bound state formation and subsequent decay. Making use of a Green’s function based method to incorporate thermal corrections in perturbative co-annihilation rate computations, we show that qualitative agreement with lattice data can be found once thermally broadened bound states are accounted for. We suggest that our formalism may also be applicable to specific dark matter models which have complicated bound state structures.


Thermal Field Theory Cosmology of Theories beyond the SM Heavy Quark Physics Lattice QCD 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Ann. Phys. (Leipzig) 403 (1931) 257.ADSCrossRefMATHGoogle Scholar
  2. [2]
    L.D. Landau and E.M. Lifshitz, Quantum mechanics, non-relativistic theory, 3rd edition, Butterworth-Heinemann, Oxford U.K. (1977), see §136.Google Scholar
  3. [3]
    V.S. Fadin, V.A. Khoze and T. Sjöstrand, On the threshold behavior of heavy top production, Z. Phys. C 48 (1990) 613 [INSPIRE].ADSGoogle Scholar
  4. [4]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
  5. [5]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld enhancements for thermal relic dark matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Hryczuk, R. Iengo and P. Ullio, Relic densities including Sommerfeld enhancements in the MSSM, JHEP 03 (2011) 069 [arXiv:1010.2172] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements, JHEP 05 (2015) 115 [arXiv:1411.6924] [INSPIRE].
  9. [9]
    T. Biró and J. Zimányi, Quarkochemistry in relativistic heavy ion collisions, Phys. Lett. B 113 (1982) 6 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Rafelski and B. Müller, Strangeness production in the quark-gluon plasma, Phys. Rev. Lett. 48 (1982) 1066 [Erratum ibid. 56 (1986) 2334] [INSPIRE].
  11. [11]
    T. Matsui, B. Svetitsky and L.D. McLerran, Strangeness production in ultrarelativistic heavy ion collisions. 1. Chemical kinetics in the quark-gluon plasma, Phys. Rev. D 34 (1986) 783 [Erratum ibid. D 37 (1988) 844] [INSPIRE].
  12. [12]
    D. Bödeker and M. Laine, Heavy quark chemical equilibration rate as a transport coefficient, JHEP 07 (2012) 130 [arXiv:1205.4987] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D. Bödeker and M. Laine, Sommerfeld effect in heavy quark chemical equilibration, JHEP 01 (2013) 037 [arXiv:1210.6153] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    W.E. Caswell and G.P. Lepage, Effective lagrangians for bound state problems in QED, QCD and other field theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].
  16. [16]
    J. Bernstein, L.S. Brown and G. Feinberg, The cosmological heavy neutrino problem revisited, Phys. Rev. D 32 (1985) 3261 [INSPIRE].ADSGoogle Scholar
  17. [17]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  18. [18]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J.L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, Hidden charged dark matter, JCAP 07 (2009) 004 [arXiv:0905.3039] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.B. Wise and Y. Zhang, Stable bound states of asymmetric dark matter, Phys. Rev. D 90 (2014) 055030 [Erratum ibid. 91 (2015) 039907] [arXiv:1407.4121] [INSPIRE].
  21. [21]
    B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    J. Ellis, F. Luo and K.A. Olive, Gluino coannihilation revisited, JHEP 09 (2015) 127 [arXiv:1503.07142] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K. Petraki, M. Postma and M. Wiechers, Dark-matter bound states from Feynman diagrams, JHEP 06 (2015) 128 [arXiv:1505.00109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M.L. Mangano, NLO production and decay of quarkonium, Nucl. Phys. B 514 (1998) 245 [hep-ph/9707223] [INSPIRE].
  25. [25]
    G.T. Bodwin and A. Petrelli, Order-v 4 corrections to S-wave quarkonium decay, Phys. Rev. D 66 (2002) 094011 [Erratum ibid. D 87 (2013) 039902] [arXiv:1301.1079] [INSPIRE].
  26. [26]
    M. Laine, A resummed perturbative estimate for the quarkonium spectral function in hot QCD, JHEP 05 (2007) 028 [arXiv:0704.1720] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quarkonium in any channel in resummed hot QCD, JHEP 01 (2008) 043 [arXiv:0711.1743] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Laine and Y. Schröder, Two-loop QCD gauge coupling at high temperatures, JHEP 03 (2005) 067 [hep-ph/0503061] [INSPIRE].
  29. [29]
    PACS-CS collaboration, S. Aoki et al., Precise determination of the strong coupling constant in N f = 2 + 1 lattice QCD with the Schrödinger functional scheme, JHEP 10 (2009) 053 [arXiv:0906.3906] [INSPIRE].
  30. [30]
    H.B. Meyer, QCD at non-zero temperature from the lattice, PoS(LATTICE 2015) 014 [arXiv:1512.06634] [INSPIRE].
  31. [31]
    G. Aarts et al., The bottomonium spectrum at finite temperature from N f = 2 + 1 lattice QCD, JHEP 07 (2014) 097 [arXiv:1402.6210] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands and J.-I. Skullerud, Electrical conductivity and charge diffusion in thermal QCD from the lattice, JHEP 02 (2015) 186 [arXiv:1412.6411] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    R.G. Edwards, B. Joo and H.-W. Lin, Tuning for three-flavors of anisotropic clover fermions with Stout-link smearing, Phys. Rev. D 78 (2008) 054501 [arXiv:0803.3960] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Hadron Spectrum collaboration, H.-W. Lin et al., First results from 2 + 1 dynamical quark flavors on an anisotropic lattice: light-hadron spectroscopy and setting the strange-quark mass, Phys. Rev. D 79 (2009) 034502 [arXiv:0810.3588] [INSPIRE].
  35. [35]
    C. Allton et al., 2 + 1 flavour thermal studies on an anisotropic lattice, PoS(LATTICE 2013) 151 [arXiv:1401.2116] [INSPIRE].
  36. [36]
    A. Francis, O. Kaczmarek, M. Laine, T. Neuhaus and H. Ohno, Critical point and scale setting in SU(3) plasma: an update, Phys. Rev. D 91 (2015) 096002 [arXiv:1503.05652] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Ibe, H. Murayama and T.T. Yanagida, Breit-Wigner enhancement of dark matter annihilation, Phys. Rev. D 79 (2009) 095009 [arXiv:0812.0072] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J.D. March-Russell and S.M. West, WIMPonium and boost factors for indirect dark matter detection, Phys. Lett. B 676 (2009) 133 [arXiv:0812.0559] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    W. Shepherd, T.M.P. Tait and G. Zaharijas, Bound states of weakly interacting dark matter, Phys. Rev. D 79 (2009) 055022 [arXiv:0901.2125] [INSPIRE].ADSGoogle Scholar
  41. [41]
    T. Hur and P. Ko, Scale invariant extension of the Standard Model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys. Rev. D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].ADSGoogle Scholar
  43. [43]
    Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for thermal relic dark matter of strongly interacting massive particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G.D. Kribs and E.T. Neil, Review of strongly-coupled composite dark matter models and lattice simulations, arXiv:1604.04627.
  45. [45]
    D. Banerjee, S. Datta, R. Gavai and P. Majumdar, Heavy quark momentum diffusion coefficient from lattice QCD, Phys. Rev. D 85 (2012) 014510 [arXiv:1109.5738] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Francis, O. Kaczmarek, M. Laine, T. Neuhaus and H. Ohno, Nonperturbative estimate of the heavy quark momentum diffusion coefficient, Phys. Rev. D 92 (2015) 116003 [arXiv:1508.04543] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Dainese et al., Heavy ions at the future circular collider, arXiv:1605.01389 [INSPIRE].
  48. [48]
    G.P. Lepage and P.B. Mackenzie, On the viability of lattice perturbation theory, Phys. Rev. D 48 (1993) 2250 [hep-lat/9209022] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of PhysicsSejong UniversitySeoulSouth Korea
  2. 2.AEC, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland

Personalised recommendations