Advertisement

Pseudoscalar mesons in a finite cubic volume with twisted boundary conditions

  • Gilberto Colangelo
  • Alessio Vaghi
Open Access
Regular Article - Theoretical Physics

Abstract

We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We first apply chiral perturbation theory in the p-regime and calculate the corrections for masses, decay constants, pseudoscalar coupling constants and form factors at next-to-leading order. We show that the Feynman-Hellmann theorem and the relevant Ward-Takahashi identity are satisfied. We then derive asymptotic formulae à la Lüscher for twisted boundary conditions. We show that chiral Ward identities for masses and decay constants are satisfied by the asymptotic formulae in finite volume as a consequence of infinite-volume Ward identities. Applying asymptotic formulae in combination with chiral perturbation theory we estimate corrections beyond next-to-leading order for twisted boundary conditions.

Keywords

Chiral Lagrangians Lattice QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G.M. de Divitiis, R. Petronzio and N. Tantalo, On the discretization of physical momenta in lattice QCD, Phys. Lett. B 595 (2004) 408 [hep-lat/0405002] [INSPIRE].
  2. [2]
    G.M. de Divitiis and N. Tantalo, Non leptonic two-body decay amplitudes from finite volume calculations, hep-lat/0409154 [INSPIRE].
  3. [3]
    D. Guadagnoli, F. Mescia and S. Simula, Lattice study of semileptonic form-factors with twisted boundary conditions, Phys. Rev. D 73 (2006) 114504 [hep-lat/0512020] [INSPIRE].
  4. [4]
    C.T. Sachrajda and G. Villadoro, Twisted boundary conditions in lattice simulations, Phys. Lett. B 609 (2005) 73 [hep-lat/0411033] [INSPIRE].
  5. [5]
    B.C. Tiburzi, Flavor twisted boundary conditions and the nucleon axial current, Phys. Lett. B 617 (2005) 40 [hep-lat/0504002] [INSPIRE].
  6. [6]
    B.C. Tiburzi, Flavor twisted boundary conditions and isovector form factors, Phys. Lett. B 641 (2006) 342 [hep-lat/0607019] [INSPIRE].
  7. [7]
    F.J. Jiang and B.C. Tiburzi, Flavor twisted boundary conditions, pion momentum and the pion electromagnetic form-factor, Phys. Lett. B 645 (2007) 314 [hep-lat/0610103] [INSPIRE].
  8. [8]
    F.-J. Jiang and B.C. Tiburzi, Flavor Twisted Boundary Conditions in the Breit Frame, Phys. Rev. D 78 (2008) 037501 [arXiv:0806.4371] [INSPIRE].ADSGoogle Scholar
  9. [9]
    R.A. Briceno, Z. Davoudi, T.C. Luu and M.J. Savage, Two-Baryon Systems with Twisted Boundary Conditions, Phys. Rev. D 89 (2014) 074509 [arXiv:1311.7686] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J. Bijnens and J. Relefors, Masses, Decay Constants and Electromagnetic Form-factors with Twisted Boundary Conditions, JHEP 05 (2014) 015 [arXiv:1402.1385] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 1. Stable Particle States, Commun. Math. Phys. 104 (1986) 177 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    G. Colangelo and C. Haefeli, An asymptotic formula for the pion decay constant in a large volume, Phys. Lett. B 590 (2004) 258 [hep-lat/0403025] [INSPIRE].
  13. [13]
    G. Colangelo and S. Dürr, The pion mass in finite volume, Eur. Phys. J. C 33 (2004) 543 [hep-lat/0311023] [INSPIRE].
  14. [14]
    G. Colangelo, S. Dürr and C. Haefeli, Finite volume effects for meson masses and decay constants, Nucl. Phys. B 721 (2005) 136 [hep-lat/0503014] [INSPIRE].
  15. [15]
    G. Colangelo, A. Fuhrer and S. Lanz, Finite volume effects for nucleon and heavy meson masses, Phys. Rev. D 82 (2010) 034506 [arXiv:1005.1485] [INSPIRE].ADSGoogle Scholar
  16. [16]
    G. Colangelo and C. Haefeli, Finite volume effects for the pion mass at two loops, Nucl. Phys. B 744 (2006) 14 [hep-lat/0602017] [INSPIRE].
  17. [17]
    C. Häfeli, private communications and notes, (2008).Google Scholar
  18. [18]
    H. Hellmann, Einführung in die Quantenchemie, Franz Deuticke, Leipzig, Austria (1937), pg. 285.Google Scholar
  19. [19]
    R.P. Feynman, Forces in Molecules, Phys. Rev. 56 (1939) 340 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    H.S. Green, A prerenormalized quantum electrodynamics, Proc. Phys. Soc. A 66 (1953) 873 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    Y. Takahashi, On the generalized Ward identity, Nuovo Cim. 6 (1957) 371 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    H. Fritzsch, M. Gell-Mann and H. Leutwyler, Advantages of the Color Octet Gluon Picture, Phys. Lett. B 47 (1973) 365 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Weinberg, Nonabelian Gauge Theories of the Strong Interactions, Phys. Rev. Lett. 31 (1973) 494 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Colangelo, Finite volume effects in chiral perturbation theory, Nucl. Phys. Proc. Suppl. 140 (2005) 120 [hep-lat/0409111] [INSPIRE].
  26. [26]
    J. Gasser and H. Leutwyler, Light Quarks at Low Temperatures, Phys. Lett. B 184 (1987) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Gasser and H. Leutwyler, Thermodynamics of Chiral Symmetry, Phys. Lett. B 188 (1987) 477 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Gasser and H. Leutwyler, Spontaneously Broken Symmetries: Effective Lagrangians at Finite Volume, Nucl. Phys. B 307 (1988) 763 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P. Hasenfratz and H. Leutwyler, Goldstone Boson Related Finite Size Effects in Field Theory and Critical Phenomena With O(N) Symmetry, Nucl. Phys. B 343 (1990) 241 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F.C. Hansen, Finite Size Effects in Spontaneously Broken SU(N) × SU(N) Theories, Nucl. Phys. B 345 (1990) 685 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    F.C. Hansen and H. Leutwyler, Charge correlations and topological susceptibility in QCD, Nucl. Phys. B 350 (1991) 201 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    J. Bijnens, G. Colangelo and P. Talavera, The vector and scalar form-factors of the pion to two loops, JHEP 05 (1998) 014 [hep-ph/9805389] [INSPIRE].
  34. [34]
    J.C. Ward, An Identity in Quantum Electrodynamics, Phys. Rev. 78 (1950) 182 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    TWQCD and JLQCD collaborations, S. Aoki et al., Pion form factors from two-flavor lattice QCD with exact chiral symmetry, Phys. Rev. D 80 (2009) 034508 [arXiv:0905.2465] [INSPIRE].
  36. [36]
    T.B. Bunton, F.J. Jiang and B.C. Tiburzi, Extrapolations of Lattice Meson Form Factors, Phys. Rev. D 74 (2006) 034514 [Erratum ibid. D 74 (2006) 099902] [hep-lat/0607001] [INSPIRE].
  37. [37]
    J. Hu, F.-J. Jiang and B.C. Tiburzi, Current Renormalization in Finite Volume, Phys. Lett. B 653 (2007) 350 [arXiv:0706.3408] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Lüscher, On a relation between finite-size effects and elastic scattering processes, in Progress in Gauge Field Theory, Springer (1983), NATO ASI Series 115 (1984) 451.Google Scholar
  39. [39]
    G. Colangelo, S. Dürr and R. Sommer, Finite size effects on M(pi) in QCD from chiral perturbation theory, Nucl. Phys. Proc. Suppl. 119 (2003) 254 [hep-lat/0209110] [INSPIRE].
  40. [40]
    G. Colangelo, U. Wenger and J.M.S. Wu, Twisted Mass Finite Volume Effects, Phys. Rev. D 82 (2010) 034502 [arXiv:1003.0847] [INSPIRE].ADSGoogle Scholar
  41. [41]
    QCDSF-UKQCD collaboration, A. Ali Khan et al., The nucleon mass in N f = 2 lattice QCD: finite size effects from chiral perturbation theory, Nucl. Phys. B 689 (2004) 175 [hep-lat/0312030] [INSPIRE].
  42. [42]
    Y. Koma and M. Koma, On the finite size mass shift formula for stable particles, Nucl. Phys. B 713 (2005) 575 [hep-lat/0406034] [INSPIRE].
  43. [43]
    Y. Koma and M. Koma, Finite size mass shift formula for stable particles revisited, Nucl. Phys. Proc. Suppl. 140 (2005) 329 [hep-lat/0409002] [INSPIRE].
  44. [44]
    Y. Koma and M. Koma, More on the finite size mass shift formula for stable particles, hep-lat/0504009 [INSPIRE].
  45. [45]
    G. Colangelo, A. Fuhrer and C. Haefeli, The pion and proton mass in finite volume, Nucl. Phys. Proc. Suppl. 153 (2006) 41 [hep-lat/0512002] [INSPIRE].
  46. [46]
    G. Colangelo, M. Finkemeier and R. Urech, Tau decays and chiral perturbation theory, Phys. Rev. D 54 (1996) 4403 [hep-ph/9604279] [INSPIRE].
  47. [47]
    A. Vaghi, Finite-volume effects in chiral perturbation theory with twisted boundary conditions. Ph.D. Thesis, e-Dissertation (edbe) Universität Bern, (2015) 10.7892/boris.80733.
  48. [48]
    J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M.E. Sainio, Pion-pion scattering at low energy, Nucl. Phys. B 508 (1997) 263 [Erratum ibid. B 517 (1998) 639] [hep-ph/9707291] [INSPIRE].
  49. [49]
    V. Bernard, N. Kaiser and U.G. Meissner, pi K scattering in chiral perturbation theory to one loop, Nucl. Phys. B 357 (1991) 129 [INSPIRE].
  50. [50]
    J. Bijnens, G. Colangelo and J. Gasser, K(l4) decays beyond one loop, Nucl. Phys. B 427 (1994) 427 [hep-ph/9403390] [INSPIRE].
  51. [51]
    G. Colangelo and A. Vaghi, work in progress, (2016).Google Scholar
  52. [52]
    V. Bernard, N. Kaiser and U.G. Meissner, pi eta scattering in QCD, Phys. Rev. D 44 (1991) 3698 [INSPIRE].
  53. [53]
    G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B 603 (2001) 125 [hep-ph/0103088] [INSPIRE].
  54. [54]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Bijnens and I. Jemos, A new global fit of the L ir at next-to-next-to-leading order in Chiral Perturbation Theory, Nucl. Phys. B 854 (2012) 631 [arXiv:1103.5945] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  56. [56]
    MILC collaboration, A. Bazavov et al., MILC results for light pseudoscalars, PoS (CD09) 007 [arXiv:0910.2966] [INSPIRE].
  57. [57]
    S. Borsányi et al., SU(2) chiral perturbation theory low-energy constants from 2+1 flavor staggered lattice simulations, Phys. Rev. D 88 (2013) 014513 [arXiv:1205.0788] [INSPIRE].ADSGoogle Scholar
  58. [58]
    RBC and UKQCD collaborations, R. Arthur et al., Domain Wall QCD with Near-Physical Pions, Phys. Rev. D 87 (2013) 094514 [arXiv:1208.4412] [INSPIRE].
  59. [59]
    S.R. Beane et al., SU(2) Low-Energy Constants from Mixed-Action Lattice QCD, Phys. Rev. D 86 (2012) 094509 [arXiv:1108.1380] [INSPIRE].ADSGoogle Scholar
  60. [60]
    A. Bazavov et al., Staggered chiral perturbation theory in the two-flavor case and SU(2) analysis of the MILC data, PoS (LATTICE 2010) 083 [arXiv:1011.1792] [INSPIRE].
  61. [61]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  62. [62]
    MILC collaboration, A. Bazavov et al., Results for light pseudoscalar mesons, PoS (LATTICE 2010) 074 [arXiv:1012.0868] [INSPIRE].
  63. [63]
    HPQCD and UKQCD collaborations, E. Follana, C.T.H. Davies, G.P. Lepage and J. Shigemitsu, High Precision determination of the pi, K, D and D(s) decay constants from lattice QCD, Phys. Rev. Lett. 100 (2008) 062002 [arXiv:0706.1726] [INSPIRE].
  64. [64]
    J.M.M. Hall, D.B. Leinweber, B.J. Owen and R.D. Young, Finite-volume corrections to charge radii, Phys. Lett. B 725 (2013) 101 [arXiv:1210.6124] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland

Personalised recommendations