Advertisement

Marginal breaking of conformal SUSY QCD

  • Kevin F. Cleary
  • John Terning
Open Access
Regular Article - Theoretical Physics
  • 48 Downloads

Abstract

We provide an example of a 4D theory that exhibits the Contino-Pomarol-Rattazzi mechanism, where breaking conformal symmetry by an almost marginal operator leads to a light pseudo-Goldstone boson, the dilaton, and a parametrically suppressed contribution to vacuum energy. We consider SUSY QCD at the edge of the conformal window and break conformal symmetry by weakly gauging a subgroup of the flavor symmetry. Using Seiberg duality we show that for a range of parameters the singlet meson in the dual theory reaches the unitarity bound, however, this theory does not have a stable vacuum. We stabilize the vacuum with soft breaking terms, compute the mass of the dilaton, and determine the range of parameters where the leading contribution to the dilaton mass is from the almost marginal coupling.

Keywords

Conformal and W Symmetry Spontaneous Symmetry Breaking Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Fubini, A new approach to conformal invariant field theories, Nuovo Cim. A 34 (1976) 521 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R. Contino, A. Pomarol and R. Rattazzi, The naturally light dilaton or how to break dilations spontaneously and naturally, talk by R. Rattazzi at Planck 2010, slides, CERN, Geneva Switzerland (2010).
  3. [3]
    A. Pomarol, Elementary or composite: the particle physics dilemma, talk at 2010 Madrid Christmas Workshop, Madrid Spain December 2010.Google Scholar
  4. [4]
    B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, A naturally light dilaton and a small cosmological constant, Eur. Phys. J. C 74 (2014) 2790 [arXiv:1305.3919] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F. Coradeschi, P. Lodone, D. Pappadopulo, R. Rattazzi and L. Vitale, A naturally light dilaton, JHEP 11 (2013) 057 [arXiv:1306.4601] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    B. Holdom and J. Terning, A light dilaton in gauge theories?, Phys. Lett. B 187 (1987) 357 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B. Holdom and J. Terning, No light dilaton in gauge theories, Phys. Lett. B 200 (1988) 338 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].
  9. [9]
    E. Megias and O. Pujolàs, Naturally light dilatons from nearly marginal deformations, JHEP 08 (2014) 081 [arXiv:1401.4998] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P. Cox and T. Gherghetta, A soft-wall dilaton, JHEP 02 (2015) 006 [arXiv:1411.1732] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    Z. Chacko and R.K. Mishra, Effective theory of a light dilaton, Phys. Rev. D 87 (2013) 115006 [arXiv:1209.3022] [INSPIRE].ADSGoogle Scholar
  12. [12]
    W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    N. Seiberg, Electric-magnetic duality in supersymmetric non-Abelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    N. Seiberg, The power of duality: exact results in 4D SUSY field theory, Int. J. Mod. Phys. A 16 (2001) 4365 [Prog. Theor. Phys. Suppl. 123 (1996) 337] [hep-th/9506077] [INSPIRE].
  15. [15]
    B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, A Higgslike dilaton, Eur. Phys. J. C 73 (2013) 2333 [arXiv:1209.3299] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005 [hep-ph/9803290] [INSPIRE].
  17. [17]
    N. Arkani-Hamed and R. Rattazzi, Exact results for nonholomorphic masses in softly broken supersymmetric gauge theories, Phys. Lett. B 454 (1999) 290 [hep-th/9804068] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M.A. Luty and R. Rattazzi, Soft supersymmetry breaking in deformed moduli spaces, conformal theories and N = 2 Yang-Mills theory, JHEP 11 (1999) 001 [hep-th/9908085] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    A. de Gouvêa, A. Friedland and H. Murayama, Seiberg duality and e + e experiments, Phys. Rev. D 59 (1999) 105008 [hep-th/9810020] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    I. Bena and R. Roiban, Exact superpotentials in N = 1 theories with flavor and their matrix model formulation, Phys. Lett. B 555 (2003) 117 [hep-th/0211075] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, Phys. Rev. D 86 (2012) 075009 [arXiv:1201.1293] [INSPIRE].ADSGoogle Scholar
  22. [22]
    T. Appelquist, J. Terning and L.C.R. Wijewardhana, Postmodern technicolor, Phys. Rev. Lett. 79 (1997) 2767 [hep-ph/9706238] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaDavisU.S.A.

Personalised recommendations