Advertisement

Berends-Giele recursion for double-color-ordered amplitudes

  • Carlos R. Mafra
Open Access
Regular Article - Theoretical Physics

Abstract

Tree-level double-color-ordered amplitudes are computed using Berends-Giele recursion relations applied to the bi-adjoint cubic scalar theory. The standard notion of Berends-Giele currents is generalized to double-currents and their recursions are derived from a perturbiner expansion of linearized fields that solve the non-linear field equations. Two applications are given. Firstly, we prove that the entries of the inverse KLT matrix are equal to Berends-Giele double-currents (and are therefore easy to compute). And secondly, a simple formula to generate tree-level BCJ-satisfying numerators for arbitrary multiplicity is proposed by evaluating the field-theory limit of tree-level string amplitudes for various color orderings using double-color-ordered amplitudes.

Keywords

Superstrings and Heterotic Strings Effective field theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The momentum kernel of gauge and gravity theories, JHEP 01 (2011) 001 [arXiv:1010.3933] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude I. Pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].
  6. [6]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure, Nucl. Phys. B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].
  7. [7]
    J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple zeta values and superstring amplitudes, Fortsch. Phys. 61 (2013) 812 [arXiv:1304.7267] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. Baadsgaard, N.E.J. Bjerrum-Bohr, J.L. Bourjaily and P.H. Damgaard, Integration rules for scattering equations, JHEP 09 (2015) 129 [arXiv:1506.06137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    C. Baadsgaard, N.E.J. Bjerrum-Bohr, J.L. Bourjaily and P.H. Damgaard, Scattering equations and Feynman diagrams, JHEP 09 (2015) 136 [arXiv:1507.00997] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    C.S. Lam and Y.-P. Yao, Role of Möbius constants and scattering functions in Cachazo-He-Yuan scalar amplitudes, Phys. Rev. D 93 (2016) 105004 [arXiv:1512.05387] [INSPIRE].ADSGoogle Scholar
  12. [12]
    L. Dolan and P. Goddard, Proof of the formula of Cachazo, He and Yuan for Yang-Mills tree amplitudes in arbitrary dimension, JHEP 05 (2014) 010 [arXiv:1311.5200] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    K.G. Selivanov, Postclassicism in tree amplitudes, hep-th/9905128.
  14. [14]
    S. Lee, C.R. Mafra and O. Schlotterer, Non-linear gauge transformations in D = 10 SYM theory and the BCJ duality, JHEP 03 (2016) 090 [arXiv:1510.08843] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    C. Reutenauer, Free Lie algebras, London Mathematical Society Monographs, Oxford University Press, Oxford U.K. (1993).Google Scholar
  19. [19]
    C.R. Mafra and O. Schlotterer, Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory, Phys. Rev. D 92 (2015) 066001 [arXiv:1501.05562] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    C.R. Mafra and O. Schlotterer, Berends-Giele recursions and the BCJ duality in superspace and components, JHEP 03 (2016) 097 [arXiv:1510.08846] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C. Duhr, S. Hoeche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP 08 (2006) 062 [hep-ph/0607057] [INSPIRE].
  22. [22]
    F.A. Berends and W.T. Giele, Multiple soft gluon radiation in parton processes, Nucl. Phys. B 313 (1989) 595 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Ree, Lie elements and an algebra associated with shuffles, Ann. Math. 62 (1958) 210.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    M. Schocker, Lie elements and Knuth relations, Canad. J. Math. 56 (2004) 871 [math/0209327].
  25. [25]
    R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys. B 312 (1989) 616 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].
  27. [27]
    C.-H. Fu, Y.-J. Du and B. Feng, An algebraic approach to BCJ numerators, JHEP 03 (2013) 050 [arXiv:1212.6168] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  29. [29]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
  30. [30]
    C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor BRST blocks, JHEP 07 (2014) 153 [arXiv:1404.4986] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, A recursive method for SYM n-point tree amplitudes, Phys. Rev. D 83 (2011) 126012 [arXiv:1012.3981] [INSPIRE].ADSGoogle Scholar
  32. [32]
    C.R. Mafra and O. Schlotterer, Towards one-loop SYM amplitudes from the pure spinor BRST cohomology, Fortsch. Phys. 63 (2015) 105 [arXiv:1410.0668] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    C.R. Mafra and O. Schlotterer, Two-loop five-point amplitudes of super Yang-Mills and supergravity in pure spinor superspace, JHEP 10 (2015) 124 [arXiv:1505.02746] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    F. Patras, C. Reutenauer and M. Schocker, On the Garsia Lie idempotent, Canad. Math. Bull. 48 (2005) 445.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations