Spread of entanglement and causality

Open Access
Regular Article - Theoretical Physics


We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of [1] to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multiple intervals, this model and its variations are able to reproduce intricate results exhibited by holographic theories for a significant part of the parameter space. For higher dimensions, the model bounds the tsunami velocity at the speed of light. Finally, we construct a geometric model for entanglement propagation based on a tensor network construction for global quenches.


AdS-CFT Correspondence Field Theories in Higher Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 04 (2005) P04010 [cond-mat/0503393] [INSPIRE].
  2. [2]
    T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    H. Liu and S.J. Suh, Entanglement tsunami: universal scaling in holographic thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev. D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].ADSGoogle Scholar
  5. [5]
    W.W. Ho and D.A. Abanin, Entanglement dynamics in quantum many-body systems, arXiv:1508.03784 [INSPIRE].
  6. [6]
    S. Bravyi, Upper bounds on entangling rates of bipartite Hamiltonians, Phys. Rev. A 76 (2007) 052319 [arXiv:0704.0964].ADSCrossRefGoogle Scholar
  7. [7]
    K. Van Acoleyen, M. Marien and F. Verstraete, Entanglement rates and area laws, Phys. Rev. Lett. 111 (2013) 170501 [arXiv:1304.5931].CrossRefGoogle Scholar
  8. [8]
    S.G. Avery and M.F. Paulos, Universal bounds on the time evolution of entanglement entropy, Phys. Rev. Lett. 113 (2014) 231604 [arXiv:1407.0705] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Hartman, private communication.Google Scholar
  10. [10]
    C.T. Asplund and A. Bernamonti, Mutual information after a local quench in conformal field theory, Phys. Rev. D 89 (2014) 066015 [arXiv:1311.4173] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Leichenauer and M. Moosa, Entanglement tsunami in (1 + 1)-dimensions, Phys. Rev. D 92 (2015) 126004 [arXiv:1505.04225] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Entanglement scrambling in 2d conformal field theory, JHEP 09 (2015) 110 [arXiv:1506.03772] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].
  14. [14]
    R. Bousso, H. Casini, Z. Fisher and J. Maldacena, Entropy on a null surface for interacting quantum field theories and the Bousso bound, Phys. Rev. D 91 (2015) 084030 [arXiv:1406.4545] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    E.H. Lieb and M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys. 14 (1973) 1938 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].ADSGoogle Scholar
  17. [17]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Cardy, Quantum quenches to a critical point in one dimension: some further results, J. Stat. Mech. 02 (2016) 023103 [arXiv:1507.07266] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  20. [20]
    V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Chandran and C.R. Laumann, A semi-classical limit for the many-body localization transition, Phys. Rev. B 92 (2015) 024301 [arXiv:1501.01971].ADSCrossRefGoogle Scholar
  22. [22]
    B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
  23. [23]
    M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    H. Casini and M. Huerta, A c-theorem for the entanglement entropy, J. Phys. A 40 (2007) 7031 [cond-mat/0610375] [INSPIRE].
  27. [27]
    H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].ADSGoogle Scholar
  28. [28]
    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Instituto Balseiro, Centro AtomicoBarilocheArgentina
  2. 2.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.
  3. 3.Princeton Center for Theoretical SciencePrinceton UniversityPrincetonU.S.A.

Personalised recommendations