The Abelian heterotic conifold

Open Access
Regular Article - Theoretical Physics


We study heterotic supergravity on the conifold and its 2 orbifold with Abelian gauge fields and three-form flux. By taking a limit of large five brane charge, we are able suppress non-linear curvature corrections and construct exact supersymmetric solutions. At large distances, these solutions are generically locally Ricci-flat, have a magnetic flux through the two-sphere at infinity as well as non-zero five-brane charge. For a given flux, our family of solutions has three real parameters, the size of the pair of two spheres in the IR and the dilaton zero mode. We present an explicit analytic solution for a decoupled near horizon region which is not asymptotically locally Ricci-flat and where for a given flux, the size of the cycles is frozen and the only parameter is the dilaton zero mode. We also present an exactly solvable worldsheet CFT for this near horizon region. When one of the two cycles has vanishing size, the near horizon region no longer exists but nonetheless we obtain a solution on the (unorbifolded) resolved conifold.


Flux compactifications Superstrings and Heterotic Strings Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    C.M. Hull, Compactifications of the heterotic superstring, Phys. Lett. B 178 (1986) 357 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    K. Dasgupta, G. Rajesh and S. Sethi, M-theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    E. Goldstein and S. Prokushkin, Geometric model for complex non-Kähler manifolds with SU(3) structure, Commun. Math. Phys. 251 (2004) 65 [hep-th/0212307] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    J.-X. Fu and S.-T. Yau, The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation, J. Diff. Geom. 78 (2008) 369 [hep-th/0604063] [INSPIRE].MathSciNetMATHGoogle Scholar
  6. [6]
    K. Becker and S. Sethi, Torsional heterotic geometries, Nucl. Phys. B 820 (2009) 1 [arXiv:0903.3769] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. Adams, M. Ernebjerg and J.M. Lapan, Linear models for flux vacua, Adv. Theor. Math. Phys. 12 (2008) 817 [hep-th/0611084] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    M. Blaszczyk, S. Groot Nibbelink and F. Ruehle, Green-Schwarz mechanism in heterotic (2, 0) gauged linear sigma models: torsion and NS5 branes, JHEP 08 (2011) 083 [arXiv:1107.0320] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    C. Quigley and S. Sethi, Linear sigma models with torsion, JHEP 11 (2011) 034 [arXiv:1107.0714] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    C. Quigley, S. Sethi and M. Stern, Novel branches of (0, 2) theories, JHEP 09 (2012) 064 [arXiv:1206.3228] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Adams, E. Dyer and J. Lee, GLSMs for non-Kähler geometries, JHEP 01 (2013) 044 [arXiv:1206.5815] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    J.M. Maldacena and C. Núñez, Towards the large N limit of pure N = 1 super Yang-Mills theory, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Atiyah, J.M. Maldacena and C. Vafa, An M-theory flop as a large N duality, J. Math. Phys. 42 (2001) 3209 [hep-th/0011256] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    L. Carlevaro, D. Israël and P.M. Petropoulos, Double-scaling limit of heterotic bundles and dynamical deformation in CFT, Nucl. Phys. B 827 (2010) 503 [arXiv:0812.3391] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    L. Carlevaro and D. Israël, Heterotic resolved conifolds with torsion, from supergravity to CFT, JHEP 01 (2010) 083 [arXiv:0910.3190] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    J.-X. Fu, L.-S. Tseng and S.-T. Yau, Local heterotic torsional models, Commun. Math. Phys. 289 (2009) 1151 [arXiv:0806.2392] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    C.G. Callan Jr., J.A. Harvey and A. Strominger, Supersymmetric string solitons, hep-th/9112030 [INSPIRE].
  23. [23]
    O. Aharony, M. Berkooz, D. Kutasov and N. Seiberg, Linear dilatons, NS5-branes and holography, JHEP 10 (1998) 004 [hep-th/9808149] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    A.H. Chamseddine and M.S. Volkov, Non-Abelian Bogomol’nyi-Prasad-Sommerfield monopoles in N = 4 gauged supergravity, Phys. Rev. Lett. 79 (1997) 3343 [hep-th/9707176] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    A.H. Chamseddine and M.S. Volkov, Non-Abelian solitons in N = 4 gauged supergravity and leading order string theory, Phys. Rev. D 57 (1998) 6242 [hep-th/9711181] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a non-supersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    F. Chen, K. Dasgupta, J.M. Lapan, J. Seo and R. Tatar, Gauge/gravity duality in heterotic string theory, Phys. Rev. D 88 (2013) 066003 [arXiv:1303.4750] [INSPIRE].ADSGoogle Scholar
  28. [28]
    T. Fei, A construction of non-Kähler Calabi-Yau manifolds and new solutions to the Strominger system, arXiv:1507.00293 [INSPIRE].
  29. [29]
    T. Fei, Some torsional local models of heterotic strings, arXiv:1508.05566 [INSPIRE].
  30. [30]
    E.A. Bergshoeff and M. de Roo, The quartic effective action of the heterotic string and supersymmetry, Nucl. Phys. B 328 (1989) 439 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    M.B. Green and J.H. Schwarz, Anomaly cancellations in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    J. Li and S.T. Yau, Hermitian Yang-Mills connection on non-Kähler manifolds, Conf. Proc. C 8607214 (1986) 560 [INSPIRE].Google Scholar
  34. [34]
    A.-A. Weil, Introduction à l’étude des variétés kählériennes, Hermann (1958).Google Scholar
  35. [35]
    C.M. Hull, Anomalies, ambiguities and superstrings, Phys. Lett. B 167 (1986) 51 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    C.M. Hull and P.K. Townsend, World sheet supersymmetry and anomaly cancellation in the heterotic string, Phys. Lett. B 178 (1986) 187 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    A. Sen, (2, 0) supersymmetry and space-time supersymmetry in the heterotic string theory, Nucl. Phys. B 278 (1986) 289 [INSPIRE].
  38. [38]
    X. de la Ossa and E.E. Svanes, Connections, field redefinitions and heterotic supergravity, JHEP 12 (2014) 008 [arXiv:1409.3347] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    S. Ivanov, Heterotic supersymmetry, anomaly cancellation and equations of motion, Phys. Lett. B 685 (2010) 190 [arXiv:0908.2927] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    I.V. Melnikov, R. Minasian and S. Sethi, Heterotic fluxes and supersymmetry, JHEP 06 (2014) 174 [arXiv:1403.4298] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    D.N. Page and C.N. Pope, Inhomogeneous Einstein metrics on complex line bundles, Class. Quant. Grav. 4 (1987) 213 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    C.V. Johnson, Exact models of extremal dyonic four-dimensional black hole solutions of heterotic string theory, Phys. Rev. D 50 (1994) 4032 [hep-th/9403192] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    C.V. Johnson, Heterotic cosets, in Proceedings of the High-Energy Physics and Cosmology Summer School, Trieste Italy, 13 Jun-29 Jul 1994 [hep-th/9409061] [INSPIRE].
  44. [44]
    C.V. Johnson, Heterotic coset models, Mod. Phys. Lett. A 10 (1995) 549 [hep-th/9409062] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    C. Klimč´ık and A.A. Tseytlin, Exact four-dimensional string solutions and Toda-like sigma models from ‘null-gauged’ WZNW theories, Nucl. Phys. B 424 (1994) 71 [hep-th/9402120] [INSPIRE].
  46. [46]
    D. Israël, Habilitation de recherche, UPMC, Sorbonne Universités (2014).Google Scholar
  47. [47]
    A.A. Tseytlin, Effective action of gauged WZW model and exact string solutions, Nucl. Phys. B 399 (1993) 601 [hep-th/9301015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    D. Marolf, Chern-Simons terms and the three notions of charge, in Proceedings of Quantization, Gauge Theory, and Strings. International Conference Dedicated to the Memory of Professor Efim Fradkin, Moscow Russia, 5-10 Jun 2000, Vol. 1+2, pp. 312-320 [hep-th/0006117] [INSPIRE].
  49. [49]
    O. Aharony, A. Hashimoto, S. Hirano and P. Ouyang, D-brane charges in gravitational duals of 2+1 dimensional gauge theories and duality cascades, JHEP 01 (2010) 072 [arXiv:0906.2390] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    R. Rohm and E. Witten, The antisymmetric tensor field in superstring theory, Annals Phys. 170 (1986) 454 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    S. Gukov, S. Kachru, X. Liu and L. McAllister, Heterotic moduli stabilization with fractional Chern-Simons invariants, Phys. Rev. D 69 (2004) 086008 [hep-th/0310159] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    E. Witten, Global anomalies in string theory, in Proceedings of the Symposium on Anomalies, Geometry, Topology, Argonne U.S.A., 28-30 Mar 1985.Google Scholar
  53. [53]
    J.O. Conrad, On fractional instanton numbers in six-dimensional heterotic E 8 × E 8 orbifolds, JHEP 11 (2000) 022 [hep-th/0009251] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    H. Nishi, SU(n)-Chern-Simons invariants of Seifert fibered 3-manifolds, Int. J. Math. 09 (1998) 295.MathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    A. Butti, M. Graña, R. Minasian, M. Petrini and A. Zaffaroni, The baryonic branch of Klebanov-Strassler solution: a supersymmetric family of SU(3) structure backgrounds, JHEP 03 (2005) 069 [hep-th/0412187] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    R. Casero, C. Núñez and A. Paredes, Towards the string dual of \( \mathcal{N}=1 \) SQCD-like theories, Phys. Rev. D 73 (2006) 086005 [hep-th/0602027] [INSPIRE].ADSGoogle Scholar
  57. [57]
    J. Maldacena and D. Martelli, The unwarped, resolved, deformed conifold: fivebranes and the baryonic branch of the Klebanov-Strassler theory, JHEP 01 (2010) 104 [arXiv:0906.0591] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    A. Brandhuber, G 2 holonomy spaces from invariant three-forms, Nucl. Phys. B 629 (2002) 393 [hep-th/0112113] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    R. Bryand and S. Salamon, On the construction of some complete metrices with expectional holonomy, Duke Math. J. 58 (1989) 829 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  61. [61]
    G.W. Gibbons, D.N. Page and C.N. Pope, Einstein metrics on S 3 , R 3 and R 4 bundles, Commun. Math. Phys. 127 (1990) 529 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    M. Atiyah and E. Witten, M-theory dynamics on a manifold of G 2 holonomy, Adv. Theor. Math. Phys. 6 (2003) 1 [hep-th/0107177] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    B.S. Acharya and S. Gukov, M theory and singularities of exceptional holonomy manifolds, Phys. Rept. 392 (2004) 121 [hep-th/0409191] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    N. Halmagyi, Missing mirrors: type IIA supergravity on the resolved conifold, arXiv:1003.2121 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.LPTHE, Sorbonne Universités, UPMC Paris 06, UMR 7589ParisFrance
  2. 2.LPTHE, CNRS, UMR 7589ParisFrance
  3. 3.Sorbonne Universités, Institut Lagrange de ParisParisFrance

Personalised recommendations