Advertisement

Covariant action for type IIB supergravity

  • Ashoke Sen
Open Access
Regular Article - Theoretical Physics

Abstract

Taking clues from the recent construction of the covariant action for type II and heterotic string field theories, we construct a manifestly Lorentz covariant action for type IIB supergravity, and discuss its gauge fixing maintaining manifest Lorentz invariance. The action contains a (non-gravitating) free 4-form field besides the usual fields of type IIB supergravity. This free field, being completely decoupled from the interacting sector, has no physical consequence.

Keywords

String Field Theory Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Marcus and J.H. Schwarz, Field theories that have no manifestly Lorentz invariant formulation, Phys. Lett. B 115 (1982) 111 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J.H. Schwarz and P.C. West, Symmetries and transformations of chiral N = 2 D = 10 supergravity, Phys. Lett. B 126 (1983) 301 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.H. Schwarz, Covariant field equations of chiral N = 2 D = 10 supergravity, Nucl. Phys. B 226 (1983) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P.S. Howe and P.C. West, The complete N = 2, D = 10 supergravity, Nucl. Phys. B 238 (1984) 181 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Sen, BV master action for heterotic and type II string field theories, JHEP 02 (2016) 087 [arXiv:1508.05387] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Kiryu and Y. Okawa, work in progress.Google Scholar
  7. [7]
    M. Henneaux and C. Teitelboim, Dynamics of chiral (selfdual) P forms, Phys. Lett. B 206 (1988) 650 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.H. Schwarz and A. Sen, Duality symmetric actions, Nucl. Phys. B 411 (1994) 35 [hep-th/9304154] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    J.H. Schwarz, Coupling a selfdual tensor to gravity in six-dimensions, Phys. Lett. B 395 (1997) 191 [hep-th/9701008] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D. Belov and G.W. Moore, Holographic action for the self-dual field, hep-th/0605038 [INSPIRE].
  11. [11]
    B. McClain, F. Yu and Y.S. Wu, Covariant quantization of chiral bosons and OSp(1, 1|2) symmetry, Nucl. Phys. B 343 (1990) 689 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    C. Wotzasek, The Wess-Zumino term for chiral bosons, Phys. Rev. Lett. 66 (1991) 129 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    I. Martin and A. Restuccia, Duality symmetric actions and canonical quantization, Phys. Lett. B 323 (1994) 311 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    F.P. Devecchi and M. Henneaux, Covariant path integral for chiral p forms, Phys. Rev. D 54 (1996) 1606 [hep-th/9603031] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    L.D. Faddeev and S.L. Shatashvili, Realization of the Schwinger term in the Gauss law and the possibility of correct quantization of a theory with anomalies, Phys. Lett. B 167 (1986) 225 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    I. Bengtsson and A. Kleppe, On chiral p forms, Int. J. Mod. Phys. A 12 (1997) 3397 [hep-th/9609102] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    N. Berkovits, Manifest electromagnetic duality in closed superstring field theory, Phys. Lett. B 388 (1996) 743 [hep-th/9607070] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    N. Berkovits, Local actions with electric and magnetic sources, Phys. Lett. B 395 (1997) 28 [hep-th/9610134] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    N. Berkovits, SuperMaxwell actions with manifest duality, Phys. Lett. B 398 (1997) 79 [hep-th/9610226] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    P. Pasti, D.P. Sorokin and M. Tonin, Space-time symmetries in duality symmetric models, in Gauge theories, applied supersymmetry, quantum gravity, B. de Wit et al. eds, Leuven University Press, Leuven, Begium (1995), DFPD-TH-95-46 (1995).
  21. [21]
    P. Pasti, D.P. Sorokin and M. Tonin, On Lorentz invariant actions for chiral p forms, Phys. Rev. D 55 (1997) 6292 [hep-th/9611100] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    G. Dall’Agata, K. Lechner and D.P. Sorokin, Covariant actions for the bosonic sector of D = 10 IIB supergravity, Class. Quant. Grav. 14 (1997) L195 [hep-th/9707044] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    G. Dall’Agata, K. Lechner and M. Tonin, D = 10, N = IIB supergravity: Lorentz invariant actions and duality, JHEP 07 (1998) 017 [hep-th/9806140] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    G. Dall’Agata, K. Lechner and M. Tonin, Action for IIB supergravity in 10-dimensions, hep-th/9812170 [INSPIRE].
  25. [25]
    E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103 [hep-th/9610234] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    E. Witten, Duality relations among topological effects in string theory, JHEP 05 (2000) 031 [hep-th/9912086] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    L. Castellani and I. Pesando, The complete action of chiral D = 10, N = 2 supergravity, Conf. Proc. C 9115201 (1991) 24 [INSPIRE].MathSciNetGoogle Scholar
  28. [28]
    L. Castellani and I. Pesando, The complete superspace action of chiral D = 10, N = 2 supergravity, Int. J. Mod. Phys. A 8 (1993) 1125 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].
  32. [32]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    W. Siegel, Manifest duality in low-energy superstrings, in the procedings of Stringe ’93, May 24-29, Berkeley, U.S.A. (1993), hep-th/9308133 [INSPIRE].
  35. [35]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    L. Álvarez-Gaumé and E. Witten, Gravitational anomalies, Nucl. Phys. B 234 (1984) 269 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Harish-Chandra Research InstituteAllahabadIndia

Personalised recommendations