Analytical approximations for matter effects on CP violation in the accelerator-based neutrino oscillations with E ≲ 1 GeV

  • Zhi-zhong Xing
  • Jing-yu Zhu
Open Access
Regular Article - Theoretical Physics


Given an accelerator-based neutrino experiment with the beam energy E ≲ 1 GeV, we expand the probabilities of ν μ ν e and \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) oscillations in matter in terms of two small quantities Δ21 /Δ31 and A/Δ31, where Δ 21m 2 2  − m 1 2 and Δ 31m 3 2  − m 1 2 are the neutrino mass-squared differences, and A measures the strength of terrestrial matter effects. Our analytical approximations are numerically more accurate than those made by Freund in this energy region, and thus they are particularly applicable for the study of leptonic CP violation in the low-energy MOMENT, ESSνSM and T2K oscillation experiments. As a by-product, the new analytical approximations help us to easily understand why the matter-corrected Jarlskog parameter \( \tilde{\mathcal{J}} \) peaks at the resonance energy E ≃ 0.14GeV (or 0.12 GeV) for the normal (or inverted) neutrino mass hierarchy, and how the three Dirac unitarity triangles are deformed due to the terrestrial matter contamination. We also affirm that a medium-baseline neutrino oscillation experiment with the beam energy E lying in the E E ≲ 2E range is capable of exploring leptonic CP violation with little matter-induced suppression.


CP violation Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  2. [2]
    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  3. [3]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  4. [4]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T2K collaboration, K. Abe et al., Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam, Phys. Rev. Lett. 111 (2013) 211803 [arXiv:1308.0465] [INSPIRE].
  6. [6]
    T2K collaboration, K. Abe et al., Precise measurement of the neutrino mixing parameter θ 23 from muon neutrino disappearance in an off-axis beam, Phys. Rev. Lett. 112 (2014) 181801 [arXiv:1403.1532] [INSPIRE].
  7. [7]
    B. Rebel, The NOνA experiment, talk given at the XIV International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015), September 7-15, Torino, Italy (2015).Google Scholar
  8. [8]
    Daya Bay collaboration, F.P. An et al., Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay, Phys. Rev. Lett. 112 (2014) 061801 [arXiv:1310.6732] [INSPIRE].
  9. [9]
    Daya Bay collaboration, F.P. An et al., New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay, Phys. Rev. Lett. 115 (2015) 111802 [arXiv:1505.03456] [INSPIRE].
  10. [10]
    P. Shanahan, Long-baseline and atmospheric neutrino experiments, talk given at the 27th International Symposium on Lepton Photon Interactions at High Energies, August 17-22, Ljubljana, Slovenia (2015).Google Scholar
  11. [11]
    F. Capozzi, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Neutrino masses and mixings: status of known and unknown 3ν parameters, Nucl. Phys. B 908 (2016) 218 [arXiv:1601.07777] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Y. Wang and Z.-z. Xing, Neutrino masses and flavor oscillations, arXiv:1504.06155 [INSPIRE].
  13. [13]
    J. Cao et al., Muon-decay medium-baseline neutrino beam facility, Phys. Rev. ST Accel. Beams 17 (2014) 090101 [arXiv:1401.8125] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    ESSnuSB collaboration, E. Baussan et al., A very intense neutrino super beam experiment for leptonic CP-violation discovery based on the European spallation source linac, Nucl. Phys. B 885 (2014) 127 [arXiv:1309.7022] [INSPIRE].
  15. [15]
    M. Freund, Analytic approximations for three neutrino oscillation parameters and probabilities in matter, Phys. Rev. D 64 (2001) 053003 [hep-ph/0103300] [INSPIRE].
  16. [16]
    X.-J. Xu, Why is the neutrino oscillation formula expanded in Δm 212/Δm 312 still accurate near the solar resonance in matter?, JHEP 10 (2015) 090 [arXiv:1502.02503] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP 6 (1957) 429 [Zh. Eksp. Teor. Fiz. 33 (1957) 549] [INSPIRE].
  18. [18]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717] [INSPIRE].
  20. [20]
    C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].ADSGoogle Scholar
  22. [22]
    S.P. Mikheev and A. Yu. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [Yad. Fiz. 42 (1985) 1441] [INSPIRE].
  23. [23]
    P.I. Krastev and S.T. Petcov, Resonance amplification and t violation effects in three neutrino oscillations in the Earth, Phys. Lett. B 205 (1988) 84 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E.K. Akhmedov, P. Huber, M. Lindner and T. Ohlsson, T violation in neutrino oscillations in matter, Nucl. Phys. B 608 (2001) 394 [hep-ph/0105029] [INSPIRE].
  25. [25]
    V.A. Naumov, Three neutrino oscillations in matter, CP-violation and topological phases, Int. J. Mod. Phys. D 1 (1992) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P.F. Harrison and W.G. Scott, CP and T violation in neutrino oscillations and invariance of Jarlskogs determinant to matter effects, Phys. Lett. B 476 (2000) 349 [hep-ph/9912435] [INSPIRE].
  27. [27]
    Z.-z. Xing, Sum rules of neutrino masses and CP-violation in the four neutrino mixing scheme, Phys. Rev. D 64 (2001) 033005 [hep-ph/0102021] [INSPIRE].
  28. [28]
    H. Minakata and H. Nunokawa, Measuring leptonic CP-violation by low-energy neutrino oscillation experiments, Phys. Lett. B 495 (2000) 369 [hep-ph/0004114] [INSPIRE].
  29. [29]
    H. Fritzsch and Z.-z. Xing, Mass and flavor mixing schemes of quarks and leptons, Prog. Part. Nucl. Phys. 45 (2000) 1 [hep-ph/9912358] [INSPIRE].
  30. [30]
    J.A. Aguilar-Saavedra and G.C. Branco, Unitarity triangles and geometrical description of CP-violation with Majorana neutrinos, Phys. Rev. D 62 (2000) 096009 [hep-ph/0007025] [INSPIRE].
  31. [31]
    Z.-z. Xing and J.-y. Zhu, Leptonic unitarity triangles and effective mass triangles of the Majorana neutrinos, Nucl. Phys. B 908 (2016) 302 [arXiv:1511.00450] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    S. Toshev, On T violation in matter neutrino oscillations, Mod. Phys. Lett. A 6 (1991) 455 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    V.D. Barger, K. Whisnant, S. Pakvasa and R.J.N. Phillips, Matter effects on three-neutrino oscillations, Phys. Rev. D 22 (1980) 2718 [INSPIRE].ADSGoogle Scholar
  34. [34]
    H.W. Zaglauer and K.H. Schwarzer, The mixing angles in matter for three generations of neutrinos and the MSW mechanism, Z. Phys. C 40 (1988) 273 [INSPIRE].ADSGoogle Scholar
  35. [35]
    Z.-z. Xing, New formulation of matter effects on neutrino mixing and CP-violation, Phys. Lett. B 487 (2000) 327 [hep-ph/0002246] [INSPIRE].
  36. [36]
    A. Cervera et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [Erratum ibid. B 593 (2001) 731] [hep-ph/0002108] [INSPIRE].
  37. [37]
    Y.-F. Li and S. Luo, Neutrino oscillation probabilities in matter with direct and indirect unitarity violation in the lepton mixing matrix, Phys. Rev. D 93 (2016) 033008 [arXiv:1508.00052] [INSPIRE].ADSGoogle Scholar
  38. [38]
    I. Mocioiu and R. Shrock, Matter effects on neutrino oscillations in long baseline experiments, Phys. Rev. D 62 (2000) 053017 [hep-ph/0002149] [INSPIRE].
  39. [39]
    Z.-z. Xing, Flavor mixing and CP-violation of massive neutrinos, Int. J. Mod. Phys. A 19 (2004) 1 [hep-ph/0307359] [INSPIRE].
  40. [40]
    H. Zhang and Z.-z. Xing, Leptonic unitarity triangles in matter, Eur. Phys. J. C 41 (2005) 143 [hep-ph/0411183] [INSPIRE].
  41. [41]
    Z.-z. Xing and Z.-h. Zhao, A review of μ-τ flavor symmetry in neutrino physics, Rept. Prog. Phys. 79 (2016) 076201 [arXiv:1512.04207] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    Z.-z. Xing and H. Zhang, Reconstruction of the neutrino mixing matrix and leptonic unitarity triangles from long-baseline neutrino oscillations, Phys. Lett. B 618 (2005) 131 [hep-ph/0503118] [INSPIRE].
  43. [43]
    Z.-z. Xing, Leptonic commutators and clean T violation in neutrino oscillations, Phys. Rev. D 88 (2013) 017301 [arXiv:1304.7606] [INSPIRE].ADSGoogle Scholar
  44. [44]
    S. Luo, Dirac lepton angle matrix vs. Majorana lepton angle matrix and their renormalization group running behaviours, Phys. Rev. D 85 (2012) 013006 [arXiv:1109.4260] [INSPIRE].
  45. [45]
    Y.-F. Li, Y. Wang and Z.-z. Xing, Terrestrial matter effects on reactor antineutrino oscillations at JUNO or RENO-50: how small is small?, arXiv:1605.00900 [INSPIRE].
  46. [46]
    M. Blennow, P. Coloma and E. Fernández-Martinez, The MOMENT to search for CP-violation, JHEP 03 (2016) 197 [arXiv:1511.02859] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Y. F. Li and other members of the MOMENT experiment, private communications.Google Scholar
  48. [48]
    T. Ohlsson, H. Zhang and S. Zhou, Probing the leptonic Dirac CP-violating phase in neutrino oscillation experiments, Phys. Rev. D 87 (2013) 053006 [arXiv:1301.4333] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations