Layers of deformed instantons in holographic baryonic matter

  • Florian Preis
  • Andreas Schmitt
Open Access
Regular Article - Theoretical Physics


We discuss homogeneous baryonic matter in the decompactified limit of the Sakai-Sugimoto model, improving existing approximations based on flat-space instantons. We allow for an anisotropic deformation of the instantons in the holographic and spatial directions and for a density-dependent distribution of arbitrarily many instanton layers in the bulk. Within our approximation, the baryon onset turns out to be a second-order phase transition, at odds with nature, and there is no transition to quark matter at high densities, at odds with expectations from QCD. This changes when we impose certain constraints on the shape of single instantons, motivated by known features of holographic baryons in the vacuum. Then, a first-order baryon onset and chiral restoration at high density are possible, and at sufficiently large densities two instanton layers are formed dynamically. Our results are a further step towards describing realistic, strongly interacting matter over a large density regime within a single model, desirable for studies of compact stars.


Gauge-gravity correspondence Phase Diagram of QCD 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, Cambridge University Press, Cambridge U.K. (2014).CrossRefMATHGoogle Scholar
  5. [5]
    K. Ghoroku, K. Kubo, M. Tachibana and F. Toyoda, Holographic cold nuclear matter and neutron star, Int. J. Mod. Phys. A 29 (2014) 1450060 [arXiv:1311.1598] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Y. Kim, I.J. Shin, C.-H. Lee and M.-B. Wan, Explicit flavor symmetry breaking and holographic compact stars, J. Korean Phys. Soc. 66 (2015) 578 [arXiv:1404.3474] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C. Hoyos, D.R. Fernández, N. Jokela and A. Vuorinen, Holographic quark matter and neutron stars, arXiv:1603.02943 [INSPIRE].
  8. [8]
    M.G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    S.-W. Li, A. Schmitt and Q. Wang, From holography towards real-world nuclear matter, Phys. Rev. D 92 (2015) 026006 [arXiv:1505.04886] [INSPIRE].ADSGoogle Scholar
  13. [13]
    E. Witten, Baryons and branes in anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  14. [14]
    D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    H. Hata, T. Sakai, S. Sugimoto and S. Yamato, Baryons from instantons in holographic QCD, Prog. Theor. Phys. 117 (2007) 1157 [hep-th/0701280] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    S. Seki and J. Sonnenschein, Comments on baryons in holographic QCD, JHEP 01 (2009) 053 [arXiv:0810.1633] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Cherman and T. Ishii, Long-distance properties of baryons in the Sakai-Sugimoto model, Phys. Rev. D 86 (2012) 045011 [arXiv:1109.4665] [INSPIRE].ADSGoogle Scholar
  18. [18]
    O. Bergman, G. Lifschytz and M. Lippert, Holographic nuclear physics, JHEP 11 (2007) 056 [arXiv:0708.0326] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Rozali, H.-H. Shieh, M. Van Raamsdonk and J. Wu, Cold nuclear matter in holographic QCD, JHEP 01 (2008) 053 [arXiv:0708.1322] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    K.-Y. Kim, S.-J. Sin and I. Zahed, Dense holographic QCD in the Wigner-Seitz approximation, JHEP 09 (2008) 001 [arXiv:0712.1582] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Rho, S.-J. Sin and I. Zahed, Dense QCD: a holographic dyonic salt, Phys. Lett. B 689 (2010) 23 [arXiv:0910.3774] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    V. Kaplunovsky and J. Sonnenschein, Searching for an attractive force in holographic nuclear physics, JHEP 05 (2011) 058 [arXiv:1003.2621] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    F. Preis, A. Rebhan and A. Schmitt, Holographic baryonic matter in a background magnetic field, J. Phys. G 39 (2012) 054006 [arXiv:1109.6904] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    V. Kaplunovsky, D. Melnikov and J. Sonnenschein, Baryonic popcorn, JHEP 11 (2012) 047 [arXiv:1201.1331] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. de Boer, B.D. Chowdhury, M.P. Heller and J. Jankowski, Towards a holographic realization of the quarkyonic phase, Phys. Rev. D 87 (2013) 066009 [arXiv:1209.5915] [INSPIRE].ADSGoogle Scholar
  26. [26]
    K. Ghoroku, K. Kubo, M. Tachibana, T. Taminato and F. Toyoda, Holographic cold nuclear matter as dilute instanton gas, Phys. Rev. D 87 (2013) 066006 [arXiv:1211.2499] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Bolognesi and P. Sutcliffe, The Sakai-Sugimoto soliton, JHEP 01 (2014) 078 [arXiv:1309.1396] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Rozali, J.B. Stang and M. van Raamsdonk, Holographic baryons from oblate instantons, JHEP 02 (2014) 044 [arXiv:1309.7037] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Bolognesi and P. Sutcliffe, A low-dimensional analogue of holographic baryons, J. Phys. A 47 (2014) 135401 [arXiv:1311.2685] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  30. [30]
    S. Bolognesi, Instanton bags, high density holographic QCD and chiral symmetry restoration, Phys. Rev. D 90 (2014) 105015 [arXiv:1406.0205] [INSPIRE].ADSGoogle Scholar
  31. [31]
    V. Kaplunovsky, D. Melnikov and J. Sonnenschein, Holographic baryons and instanton crystals, Mod. Phys. Lett. B 29 (2015) 1540052 [arXiv:1501.04655] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    B. Gwak, M. Kim, B.-H. Lee, Y. Seo and S.-J. Sin, Holographic D instanton liquid and chiral transition, Phys. Rev. D 86 (2012) 026010 [arXiv:1203.4883] [INSPIRE].ADSGoogle Scholar
  33. [33]
    N. Evans, A. Gebauer, M. Magou and K.-Y. Kim, Towards a holographic model of the QCD phase diagram, J. Phys. G 39 (2012) 054005 [arXiv:1109.2633] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    L. McLerran and R.D. Pisarski, Phases of cold, dense quarks at large-N c, Nucl. Phys. A 796 (2007) 83 [arXiv:0706.2191] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    E. Antonyan, J.A. Harvey, S. Jensen and D. Kutasov, NJL and QCD from string theory, hep-th/0604017 [INSPIRE].
  36. [36]
    J.L. Davis, M. Gutperle, P. Kraus and I. Sachs, Stringy NJL and Gross-Neveu models at finite density and temperature, JHEP 10 (2007) 049 [arXiv:0708.0589] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    F. Preis, A. Rebhan and A. Schmitt, Inverse magnetic catalysis in field theory and gauge-gravity duality, Lect. Notes Phys. 871 (2013) 51 [arXiv:1208.0536] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Peeters and M. Zamaklar, The string/gauge theory correspondence in QCD, Eur. Phys. J. ST 152 (2007) 113 [arXiv:0708.1502] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    S.S. Gubser and A. Karch, From gauge-string duality to strong interactions: a pedestrian’s guide, Ann. Rev. Nucl. Part. Sci. 59 (2009) 145 [arXiv:0901.0935] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Rebhan, The Witten-Sakai-Sugimoto model: a brief review and some recent results, EPJ Web Conf. 95 (2015) 02005 [arXiv:1410.8858] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    R. Alkofer, H. Reinhardt and H. Weigel, Baryons as chiral solitons in the Nambu-Jona-Lasinio model, Phys. Rept. 265 (1996) 139 [hep-ph/9501213] [INSPIRE].
  42. [42]
    O. Bergman, S. Seki and J. Sonnenschein, Quark mass and condensate in HQCD, JHEP 12 (2007) 037 [arXiv:0708.2839] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Dhar and P. Nag, Sakai-Sugimoto model, tachyon condensation and chiral symmetry breaking, JHEP 01 (2008) 055 [arXiv:0708.3233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    K. Hashimoto, T. Hirayama, F.-L. Lin and H.-U. Yee, Quark mass deformation of holographic massless QCD, JHEP 07 (2008) 089 [arXiv:0803.4192] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    F. Brünner and A. Rebhan, Constraints on the ηη decay rate of a scalar glueball from gauge/gravity duality, Phys. Rev. D 92 (2015) 121902 [arXiv:1510.07605] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A.A. Tseytlin, Born-Infeld action, supersymmetry and string theory, hep-th/9908105 [INSPIRE].
  47. [47]
    A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Yu. S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975) 85 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    A. Sevrin, J. Troost and W. Troost, The non-Abelian Born-Infeld action at order F 6, Nucl. Phys. B 603 (2001) 389 [hep-th/0101192] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    O. Bergman, G. Lifschytz and M. Lippert, Magnetic properties of dense holographic QCD, Phys. Rev. D 79 (2009) 105024 [arXiv:0806.0366] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Rebhan, A. Schmitt and S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP 01 (2010) 026 [arXiv:0909.4782] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  51. [51]
    G. Lifschytz and M. Lippert, Holographic magnetic phase transition, Phys. Rev. D 80 (2009) 066007 [arXiv:0906.3892] [INSPIRE].ADSGoogle Scholar
  52. [52]
    F. Preis, A. Rebhan and A. Schmitt, Inverse magnetic catalysis in dense holographic matter, JHEP 03 (2011) 033 [arXiv:1012.4785] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  53. [53]
    M. Elliot-Ripley, Phases and approximations of baryonic popcorn in a low-dimensional analogue of holographic QCD, J. Phys. A 48 (2015) 295402 [arXiv:1503.08755] [INSPIRE].MATHGoogle Scholar
  54. [54]
    A. Gorsky, S.B. Gudnason and A. Krikun, Baryon and chiral symmetry breaking in holographic QCD, Phys. Rev. D 91 (2015) 126008 [arXiv:1503.04820] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität WienViennaAustria
  2. 2.Mathematical Sciences and STAG Research CentreUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations