Hypercharge flux in F-theory and the stable Sen limit

  • Andreas P. Braun
  • Andrés Collinucci
  • Roberto Valandro
Open Access


IIB compactifications enjoy the possibility to break GUT groups via fluxes without giving mass to the hypercharge gauge field. Although this important advantage has greatly motivated F-theory constructions, no such fluxes have been constructed directly in terms of the M-theory G 4-form. In this note, we give a general prescription for constructing hypercharge G-fluxes. By using a stable version of Sen’s weak coupling limit, we verify their connection with IIB fluxes. We illustrate the lift of fluxes in a number of examples, including a compact SU(5) × U(1) model with explicit realization of doublet-triplet splitting. Finally, we prove an equivalence conjectured in an earlier work as a by-product.


F-Theory Flux compactifications 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at singularities, compactification and hypercharge, JHEP 01 (2007) 107 [hep-th/0610007] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    R. Tatar and T. Watari, GUT relations from string theory compactifications, Nucl. Phys. B 810 (2009) 316 [arXiv:0806.0634] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in type IIB orientifold compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryI, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryII: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    R. Donagi and M. Wijnholt, Model building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, Adv. Theor. Math. Phys. 15 (2011) 1523 [arXiv:0808.2223] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory compactifications for supersymmetric GUTs, JHEP 08 (2009) 030 [arXiv:0904.3932] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, Global F-theory GUTs, Nucl. Phys. B 829 (2010) 325 [arXiv:0908.1784] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    E. Dudas and E. Palti, On hypercharge flux and exotics in F-theory GUTs, JHEP 09 (2010) 013 [arXiv:1007.1297] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. Marsano, Hypercharge flux, exotics and anomaly cancellation in F-theory GUTs, Phys. Rev. Lett. 106 (2011) 081601 [arXiv:1011.2212] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E. Palti, A note on hypercharge flux, anomalies and U(1)s in F-theory GUTs, Phys. Rev. D 87 (2013) 085036 [arXiv:1209.4421] [INSPIRE].ADSGoogle Scholar
  13. [13]
    C. Mayrhofer, E. Palti and T. Weigand, Hypercharge flux in IIB and F-theory: anomalies and gauge coupling unification, JHEP 09 (2013) 082 [arXiv:1303.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    A. Maharana and E. Palti, Models of particle physics from type IIB string theory and F-theory: a review, Int. J. Mod. Phys. A 28 (2013) 1330005 [arXiv:1212.0555] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    A. Clingher, R. Donagi and M. Wijnholt, The Sen limit, arXiv:1212.4505 [INSPIRE].
  18. [18]
    A.P. Braun, A. Collinucci and R. Valandro, G-flux in F-theory and algebraic cycles, Nucl. Phys. B 856 (2012) 129 [arXiv:1107.5337] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    T.W. Grimm and T. Weigand, On Abelian gauge symmetries and proton decay in global F-theory GUTs, Phys. Rev. D 82 (2010) 086009 [arXiv:1006.0226] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R. Donagi, S. Katz and M. Wijnholt, Weak coupling, degeneration and log Calabi-Yau spaces, arXiv:1212.0553 [INSPIRE].
  21. [21]
    S.S. Gubser, TASI lectures: special holonomy in string theory and M-theory, hep-th/0201114 [INSPIRE].
  22. [22]
    K. Dasgupta, G. Rajesh and S. Sethi, M-theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    A. Collinucci and R. Savelli, On flux quantization in F-theory, JHEP 02 (2012) 015 [arXiv:1011.6388] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    J.J. Heckman, H. Lin and S.-T. Yau, Building blocks for generalized heterotic/F-theory duality, arXiv:1311.6477 [INSPIRE].
  25. [25]
    W. Fulton, Introduction to toric varieties, Princeton University Press, Princeton U.S.A. (1993).MATHGoogle Scholar
  26. [26]
    A. Collinucci, New F-theory lifts. II. Permutation orientifolds and enhanced singularities, JHEP 04 (2010) 076 [arXiv:0906.0003] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    S. Krause, C. Mayrhofer and T. Weigand, Gauge fluxes in F-theory and type IIB orientifolds, JHEP 08 (2012) 119 [arXiv:1202.3138] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    A. Klemm, P. Mayr and C. Vafa, BPS states of exceptional noncritical strings, hep-th/9607139 [INSPIRE].
  30. [30]
    S. Krause, C. Mayrhofer and T. Weigand, G 4 flux, chiral matter and singularity resolution in F-theory compactifications, Nucl. Phys. B 858 (2012) 1 [arXiv:1109.3454] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    H. Hayashi, R. Tatar, Y. Toda, T. Watari and M. Yamazaki, New aspects of heterotic/F-theory duality, Nucl. Phys. B 806 (2009) 224 [arXiv:0805.1057] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    T.W. Grimm and H. Hayashi, F-theory fluxes, chirality and Chern-Simons theories, JHEP 03 (2012) 027 [arXiv:1111.1232] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    M. Cvetič, T.W. Grimm and D. Klevers, Anomaly cancellation and Abelian gauge symmetries in F-theory, JHEP 02 (2013) 101 [arXiv:1210.6034] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Collinucci, F. Denef and M. Esole, D-brane deconstructions in IIB orientifolds, JHEP 02 (2009) 005 [arXiv:0805.1573] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Andreas P. Braun
    • 1
  • Andrés Collinucci
    • 2
  • Roberto Valandro
    • 3
    • 4
  1. 1.King’s College, Department of MathematicsLondonU.K.
  2. 2.Physique Théorique et MathématiqueUniversité Libre de BruxellesBruxellesBelgium
  3. 3.ICTPTriesteItaly
  4. 4.INFN, Sezione di TriesteTriesteItaly

Personalised recommendations