Advertisement

Hypercharge flux in F-theory and the stable Sen limit

  • Andreas P. Braun
  • Andrés Collinucci
  • Roberto Valandro
Open Access
Article

Abstract

IIB compactifications enjoy the possibility to break GUT groups via fluxes without giving mass to the hypercharge gauge field. Although this important advantage has greatly motivated F-theory constructions, no such fluxes have been constructed directly in terms of the M-theory G 4-form. In this note, we give a general prescription for constructing hypercharge G-fluxes. By using a stable version of Sen’s weak coupling limit, we verify their connection with IIB fluxes. We illustrate the lift of fluxes in a number of examples, including a compact SU(5) × U(1) model with explicit realization of doublet-triplet splitting. Finally, we prove an equivalence conjectured in an earlier work as a by-product.

Keywords

F-Theory Flux compactifications 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at singularities, compactification and hypercharge, JHEP 01 (2007) 107 [hep-th/0610007] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    R. Tatar and T. Watari, GUT relations from string theory compactifications, Nucl. Phys. B 810 (2009) 316 [arXiv:0806.0634] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in type IIB orientifold compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryI, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryII: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    R. Donagi and M. Wijnholt, Model building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, Adv. Theor. Math. Phys. 15 (2011) 1523 [arXiv:0808.2223] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory compactifications for supersymmetric GUTs, JHEP 08 (2009) 030 [arXiv:0904.3932] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, Global F-theory GUTs, Nucl. Phys. B 829 (2010) 325 [arXiv:0908.1784] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    E. Dudas and E. Palti, On hypercharge flux and exotics in F-theory GUTs, JHEP 09 (2010) 013 [arXiv:1007.1297] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. Marsano, Hypercharge flux, exotics and anomaly cancellation in F-theory GUTs, Phys. Rev. Lett. 106 (2011) 081601 [arXiv:1011.2212] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E. Palti, A note on hypercharge flux, anomalies and U(1)s in F-theory GUTs, Phys. Rev. D 87 (2013) 085036 [arXiv:1209.4421] [INSPIRE].ADSGoogle Scholar
  13. [13]
    C. Mayrhofer, E. Palti and T. Weigand, Hypercharge flux in IIB and F-theory: anomalies and gauge coupling unification, JHEP 09 (2013) 082 [arXiv:1303.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    A. Maharana and E. Palti, Models of particle physics from type IIB string theory and F-theory: a review, Int. J. Mod. Phys. A 28 (2013) 1330005 [arXiv:1212.0555] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    A. Clingher, R. Donagi and M. Wijnholt, The Sen limit, arXiv:1212.4505 [INSPIRE].
  18. [18]
    A.P. Braun, A. Collinucci and R. Valandro, G-flux in F-theory and algebraic cycles, Nucl. Phys. B 856 (2012) 129 [arXiv:1107.5337] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    T.W. Grimm and T. Weigand, On Abelian gauge symmetries and proton decay in global F-theory GUTs, Phys. Rev. D 82 (2010) 086009 [arXiv:1006.0226] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R. Donagi, S. Katz and M. Wijnholt, Weak coupling, degeneration and log Calabi-Yau spaces, arXiv:1212.0553 [INSPIRE].
  21. [21]
    S.S. Gubser, TASI lectures: special holonomy in string theory and M-theory, hep-th/0201114 [INSPIRE].
  22. [22]
    K. Dasgupta, G. Rajesh and S. Sethi, M-theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    A. Collinucci and R. Savelli, On flux quantization in F-theory, JHEP 02 (2012) 015 [arXiv:1011.6388] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    J.J. Heckman, H. Lin and S.-T. Yau, Building blocks for generalized heterotic/F-theory duality, arXiv:1311.6477 [INSPIRE].
  25. [25]
    W. Fulton, Introduction to toric varieties, Princeton University Press, Princeton U.S.A. (1993).MATHGoogle Scholar
  26. [26]
    A. Collinucci, New F-theory lifts. II. Permutation orientifolds and enhanced singularities, JHEP 04 (2010) 076 [arXiv:0906.0003] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    S. Krause, C. Mayrhofer and T. Weigand, Gauge fluxes in F-theory and type IIB orientifolds, JHEP 08 (2012) 119 [arXiv:1202.3138] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    A. Klemm, P. Mayr and C. Vafa, BPS states of exceptional noncritical strings, hep-th/9607139 [INSPIRE].
  30. [30]
    S. Krause, C. Mayrhofer and T. Weigand, G 4 flux, chiral matter and singularity resolution in F-theory compactifications, Nucl. Phys. B 858 (2012) 1 [arXiv:1109.3454] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    H. Hayashi, R. Tatar, Y. Toda, T. Watari and M. Yamazaki, New aspects of heterotic/F-theory duality, Nucl. Phys. B 806 (2009) 224 [arXiv:0805.1057] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    T.W. Grimm and H. Hayashi, F-theory fluxes, chirality and Chern-Simons theories, JHEP 03 (2012) 027 [arXiv:1111.1232] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    M. Cvetič, T.W. Grimm and D. Klevers, Anomaly cancellation and Abelian gauge symmetries in F-theory, JHEP 02 (2013) 101 [arXiv:1210.6034] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Collinucci, F. Denef and M. Esole, D-brane deconstructions in IIB orientifolds, JHEP 02 (2009) 005 [arXiv:0805.1573] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Andreas P. Braun
    • 1
  • Andrés Collinucci
    • 2
  • Roberto Valandro
    • 3
    • 4
  1. 1.King’s College, Department of MathematicsLondonU.K.
  2. 2.Physique Théorique et MathématiqueUniversité Libre de BruxellesBruxellesBelgium
  3. 3.ICTPTriesteItaly
  4. 4.INFN, Sezione di TriesteTriesteItaly

Personalised recommendations